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Summary

This research investigated the feasibility of Remote Warning Score Mon-
itoring (RWSM) for outpatients using commercially available smart medi-
cal devices. A system, named Medwings, was designed, implemented, and
evaluated. A usability study was carried out and found that consumer-grade
smart devices can be used to facilitate remote patient monitoring integrated
with Early Warning Scores (EWS). While the system was largely successful
in demonstrating the practicability of RWSM, it also identified several op-
erational challenges. The Medwings system shows potential for improving
patient quality of life and optimizing healthcare resources. Despite its cur-
rent limitations, Medwings opens the door for future research and develop-
ment, given the fast-evolving market for advanced smart medical devices.
The study fills a critical knowledge gap and sets the stage for further ad-
vancements in the field of remote patient monitoring with early warning
scores.
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1 Introduction

1.1 Background

Clinical deterioration is a critical concern in healthcare, particularly for
vulnerable populations such as the elderly and chronically ill patients. It
refers to a decline in a patient’s health status and may lead to adverse
outcomes, including hospitalization, longer stays in intensive care units,
and increased healthcare costs. The Early Warning Score (EWS) has been
widely adopted internationally for preemptive detection of deteriorating
patients[1]. A large body of scientific evidence validates the effectiveness
of EWSs in assessing severity of illness, and in predicting adverse clinical
events, such as severe deterioration, likelihood of intensive care unit (ICU)
admission and mortality, both in hospital wards[2, 3, 4, 5, 6, 7, 8] and in
ambulatory care [9, 10, 11].

Two commonly used clinical scores are the National Early Warning Score
2 (NEWS2) and the Modified Early Warning Score (MEWS)[10]. Both are
calculated by capturing various vital parameters from the patient at a spe-
cific point in time, followed by numerical aggregation of the captured data
according to the score being used[2, 12]. For MEWS, each measured phys-
iological parameter is assigned an individual score based on which range
it lies in. The ranges for scoring each parameter, as proposed by Subbe et
al. in 2001[2], are shown in Table 1. The individual scores are then added
together to produce the final MEWS. A MEWS value of 5 or above indicates
an elevated risk of death, and likelihood of ICU admission[2].

Individual Score +3 +2 +1 +0 +1 +2 +3

Systolic Blood Pressure
[mmHg]

< 70 71− 80 81− 100 101− 199 — ≥ 200 —

Heart Rate [bpm] — < 40 41− 50 51− 100 101− 110 111− 129 ≥ 130

Respiratory Rate [bpm] — < 9 — 9− 14 15− 20 21− 29 ≥ 30

Temperature [°C] — < 35 — 35− 38.4 — ≥ 38.5 —
AVPU — — — alert reacting to voice reacting to pain unresponsive

Table 1: MEWS calculation ranges as proposed by Subbe et al. in 2001[2]

Traditionally, doctors and nursing staff perform collection and evaluation of
the data manually, often inputting data into EWS-calculators by hand. How-
ever, low scoring frequency and increased proclivity for errors are down-
sides of manual EWS calculation[13].

Remote patient monitoring (RPM) can improve deterioration detection[14]



2

by greatly reducing the amount of human interaction required to take mea-
surements and perform EWS calculations. A number of studies have ex-
plored RPM combined with automated EWS calculation in hospitals[13,
15, 16, 17]. With hospitals facing overwhelming patient load during the
SARS-CoV-2 pandemic, interest in exploring RPM surged to new heights,
and NEWS2 emerged as an effective tool for predicting severe infection
outcomes[15, 18, 19, 20] while reducing person-to-person contact during
patient monitoring.

1.2 Review of existing literature

In order to examine the current state of scientific knowledge about the use
of wearable devices for automated EWS monitoring of patients at home,
a comprehensive review of the existing literature was conducted. By sys-
tematically examining and synthesizing the current body of knowledge, this
review identified a variety of approaches for utilizing smart medical devices
in post-discharge patient care, as well as existing limitations and challenges
in future research in this rapidly evolving field.

1.2.1 Search strategy

A systematic search strategy was implemented on the Scopus database,
aimed to encompass a broad spectrum of literature relevant to the use of
smart medical devices for automated early warning score monitoring of out-
patients. The search focused on topics related to the research area, en-
compassing the examination of EWSs, hospital admission, care escalation,
and medical emergencies in combination with IT automation, medical wear-
ables and Internet of Things (IoT). The Scopus database was chosen for its
extensive coverage of scholarly literature across multiple disciplines.

For the search strategy, the following inclusion and exclusion criteria were
employed to select relevant articles:

Inclusion criteria:

• Articles focusing on the utilization of medical wearable devices for re-
mote patient monitoring

• OR articles addressing the automated calculation of early warning scores

• OR articles discussing the application of early warning scores outside
of medical care facilities

Exclusion criteria:
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• Non-English language articles

• Publications for which full-text access was not available

• Duplicate articles

• Articles unrelated to the “Medicine”, “Medical Informatics” or “Com-
puter Science” subject areas

The following Scopus query was used to identify relevant literature:

TITLE−ABS−KEY(("patient" OR "clinical" OR "medical")
AND ("deterioration" OR "instability" OR

"decompensation" OR "admission" OR "hospitalization"

OR "escalation" OR "triage" OR "emergency")) OR

("early warning" OR "early warning score" OR

"warning" OR "score∗" OR "EWS") AND
TITLE−ABS−KEY("system" OR "automat∗" OR "smart∗" OR
"wearable∗" OR "internet of thing∗" OR "iot" OR
"digital" OR "sensor∗" OR "signal" OR "intelligen∗"
OR "predict∗" OR "monitor∗" OR "sreen∗" OR "remote"
OR "it" OR "comput∗" OR "mobile" OR "5G" OR
"network" (("vital∗" OR "bio∗") AND ("marker∗" OR
"sign∗" OR "monitor∗"))) AND TITLE−ABS−KEY("home" OR
"domestic" OR "community" OR "remote" OR "longterm"

OR "nursing" OR "rehabilitation" OR

"out∗of∗hospital" OR "telemedicine" OR "ehealth" OR
"mhealth")

1.2.2 Results

An initial query on Scopus yielded a total of N0 = 1997 records. After remov-
ing nd = 952 duplicates, the titles and abstracts of Ns = 1045 records were
screened. Of these, ni = 963 items did not meet the inclusion criteria, leav-
ing Na = 82 articles to be assessed for eligibility in full text. Finally, after
a thorough evaluation, N = 45 articles were included in the literature re-
view, providing insight into the current state of research on the use of smart
medical devices for automated early warning score monitoring in patients
transitioning from ambulant or hospital care. Figure 1 shows the screening
process. The complete list of reviewed literature is shown in Tables 2, 3 and
4.
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Figure 1: PRISMA flowchart showing screening and assessment of identi-
fied literature

1.2.3 Discussion

While the application of EWSs in ambulant care facilities and hospitals has
been thoroughly investigated, very little research has been done to assess
their practicability for remote monitoring of at-risk patients at home. Fur-
thermore, it was observed that previous research on the use of IoT-devices
for this purpose was largely conducted in laboratory settings, limiting the
generalizability of the results. Some studies have examined monitoring vi-
tal signs of at-home-patients for abnormalities, however in most of them, no
automated EWS calculations were made[23, 26, 31, 54, 42, 25, 45, 50]. In
2015, Anzanpour et al. developed a monitoring system which collects vitals
data and calculates an EWS, however due to limited or nonexistent avail-
ability of wireless sensors for all relevant vital signs, the work was limited
to using a laboratory prototype and required manual interaction in trans-
ferring vitals data[21]. Sahu et al. documented their development of an
EWS-supported digital early warning system using the PM6750[48], an ex-
perimental vitals data monitoring device capable of taking continuous mea-
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Number Title Author(s), Year
1 Internet of things enabled in-home health monitor-

ing system using early warning score[21]
Anzanpour 2015

2 Context-Aware Early Warning System for In-Home
Healthcare Using Internet-of-Things[22]

Anzanpour 2016

3 An IoT based system for remote patient monitor-
ing[23]

Archip 2016

4 Wireless sensor network-based smart room system
for healthcare monitoring[24]

Arnil 2011

5 Design and Development of IOT Based Multi-
Parameter Patient Monitoring System[25]

Athira 2020

6 Medical warning system based on Internet of
Things using fog computing[26]

Azimi 2016

7 Self-aware early warning score system for IoT-
based personalized healthcare[27]

Azimi 2017

8 Review on IoT based Healthcare systems[28] Krishna 2022
9 Effectiveness of Early Warning Scores for Early

Severity Assessment in Outpatient Emergency
Care: A Systematic Review[10]

Burgos-Esteban 2022

10 A QRS Detection and R Point Recognition Method
for Wearable Single-Lead ECG Devices[29]

Chen 2017

11 Adopting the Internet of Things technologies in
health care systems[30]

Chiuchisan 2014

12 An EfficientWireless HealthMonitoring System[31] Chowdary 2018
13 DeepSigns: A predictive model based on Deep

Learning for the early detection of patient health
deterioration[32]

da Silva 2021

14 Use of ultra-low cost fitness trackers as clini-
cal monitors in low resource emergency depart-
ments[33]

Dagan 2020

15 A data fusion algorithm for clinically relevant
anomaly detection in remote health monitoring[34]

de Mello Dantas 2020

16 Patient attitudes towards remote continuous vital
signs monitoring on general surgery wards: An in-
terview study[1]

Downey 2018

17 Developing a real-time detection tool and an early
warning score using a continuous wearable multi-
parameter monitor[13]

Eisenkraft 2023

18 An IoT-Based Healthcare Platform for Patients in
ICU Beds During the COVID-19 Outbreak[15]

Filho 2021

Table 2: List of reviewed articles (Part 1 of 3)

surements in a laboratory setting[57]. However, the methodology they used
to calculate the EWS in real-time with laboratory data is both inconsistent
and weak.

Recent studies indicate a growing trend towards investigating automated
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Number Title Author(s), Year
19 Patient Monitoring System Based on Internet of

Things[35]
Gomez 2016

20 Continuous monitoring is superior to manual mea-
surements in detecting vital sign deviations in pa-
tients with COVID-19[36]

Gronbaek 2023

21 Secure and lightweight privacy preserving Inter-
net of things integration for remote patient moni-
toring[37]

Imtyaz 2022

22 Remote Continuous Health Monitoring System for
Patients[38]

Jagadish 2018

23 Cost utility analysis of continuous and intermittent
versus intermittent vital signs monitoring in pa-
tients admitted to surgical wards[39]

Javanbakht 2020

24 Wearable sensors to improve detection of patient
deterioration[40]

Joshi 2019

25 Intelligent Healthcare[41] Kale 2021
26 A Hospital Healthcare Monitoring System Using

Internet of Things Technologies[17]
Karvounis 2021

27 All-day mobile healthcare monitoring system
based on heterogeneous stretchable sensors for
medical emergency[42]

Lee 2020

28 Analysis of the early warning score to detect crit-
ical or high-risk patients in the prehospital set-
ting[43]

Martin-Rodriguez 2019

29 An IoT-based framework for early identification
and monitoring of COVID-19 cases[19]

Otoom 2020

30 A conceptual IoT-based early-warning architec-
ture for remote monitoring of COVID-19 patients
in wards and at home[11]

Paganelli 2022

31 Personalized Mobile Health for Elderly Home
Care: A Systematic Review of Benefits and Chal-
lenges[44]

Pahlevanynejad 2023

32 CuraBand: Health Monitoring and Warning Sys-
tem[45]

Phaltankar 2021

33 Internet of Things in Healthcare, A Literature Re-
view[46]

Quraishi 2021

34 Vital Sign Monitoring System for Healthcare
Through IoT Based Personal Service Applica-
tion[47]

Sahu 2022

35 Internet-of-Things-Enabled Early Warning Score
System for Patient Monitoring[48]

Sahu 2022

36 Cloud-Based Remote Patient Monitoring System
with Abnormality Detection and Alert Notifica-
tion[49]

Sahu 2022

Table 3: List of reviewed articles (Part 2 of 3)
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Number Title Author(s), Year
37 Remote patient monitoring using artificial intel-

ligence: Current state, applications, and chal-
lenges[14]

Shaik 2023

38 Prototype development of continuous remote mon-
itoring of ICU patients at home[50]

Thippeswamy 2021

39 IoT based Smart Healthcare Monitoring Systems:
A Review[51]

Tiwari 2021

40 Observational study on wearable biosensors and
machine learning-based remote monitoring of
COVID-19 patients[16]

Un 2021

41 Adaptive threshold-based alarm strategies for con-
tinuous vital signs monitoring[52]

van Rossum 2022

42 A retrospective comparison of the Modified Early
Warning Score (MEWS) and machine learning ap-
proach[53]

Wu 2021

43 IoT based Real Time Health Monitoring[54] Yeri 2020
44 Vital Signs Prediction and EarlyWarning Score Cal-

culation Based on Continuous Monitoring of Hospi-
talised Patients Using Wearable Technology[55]

Youssef Ali Amer 2020

45 Features of electronic Early Warning systems
which impact clinical decision making[56]

Zarabzadeh 2012

Table 4: List of reviewed articles (Part 3 of 3)

EWS calculations in real-world scenarios[1, 17, 28, 33]. Notably, the avail-
ability of comprehensive, mobile vital signs monitoring equipment has seen
a significant increase, especially in thewake of the SARS-CoV-2 pandemic[11,
15, 19, 36]. This surge in accessibility has paved the way for more exten-
sive remote monitoring of outpatients. Moreover, there is a growing inter-
est in incorporating machine learning algorithms to enhance the predictive
capabilities of deterioration detection[16, 32, 34]. This demonstrates the
evolving landscape of remote patient monitoring, aiming to improve clini-
cal outcomes and alleviate the burden on hospital wards.

Despite the wealth of literature reviewed, no existing empirical studies eval-
uating the use of early warning scores for patients at home were identified.
This highlights a crucial research gap and prompts the need for further in-
vestigation in this area, potentially warranting the development of an EWS
specialized for use outside of medical care facilities.

1.2.4 Conclusions

Based on the conducted literature review, some key implications can be
drawn. The improved availability of smart sensors and the demonstrated
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effectiveness of EWSs in predicting deterioration in direct medical care
settings warrant research into their utilization at home. Monitoring EWSs
remotely may make it possible to identify signs of deterioration early for
patients dismissed from hospital. It could also hold the potential for sig-
nificant resource savings, due to the relatively low cost of modern smart
medical sensors and a reduction in workload for medical staff, compared
to traditional on-site monitoring. However, it is important to acknowledge
the lack of research in this area, which calls for a feasibility study in this
specific context. While such a study would need to address challenges such
as the frequency of measurements required and the absence of immediate
diagnosis from qualified medical staff, it would contribute significantly to
the existing body of knowledge and help advance the field of automated
early warning score monitoring in home-based care.

1.3 Motivation

Installing and operating traditional continuous monitoring systems, like the
vital sign monitors used in medical facilities, demands specialized equip-
ment and technical expertise. Furthermore, these systems are cumbersome
for patients, as they involve connecting patient and sensor device with nu-
merous electrodes and cables, restricting patient mobility to the bed area,
and physically tying the monitoring equipment to a single location. Con-
versely, battery-powered, wireless vitals monitoring devices, such as wear-
able armbands or smartwatches, can combine several biometric sensors
into one device, allowing for amuch higher degree of patient mobility, faster
deployment and better scalability[16]. Therefore, utilizing such devices for
RPM is a suitable approach.

With the current availability of wearable, networked biosensors and the val-
idated effectiveness of EWSs in medical facilities, combining both aspects
presents an important and interesting research opportunity which could
help reduce mortality and improve clinical outcomes for patients at risk of
deterioration, both in their homes and on the go.

1.4 State of the problem

The rapid advancements in wearable, networked biosensors have expanded
the horizons of RPM. Still, their integration with EWSs remains under-
explored, especially for outpatients or those outside of traditional medical
care settings. While EWSs have proven effective in hospitals and ambulant
care facilities, the practicality of implementing them remotely, under real-
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life conditions, leveraging state-of-the-art smart medical devices, remains
uncertain.

Existing research on RPM predominantly focuses on the technology’s capa-
bility for vital signs monitoring, often sidelining the integration and auto-
mated calculation of EWSs. This results in a knowledge gap concerning the
effectiveness, feasibility, and design challenges of a system which combines
both concepts. Moreover, there is a lack of available software implementing
such a system, while being usable by patients at home or during their daily
routines.

1.5 Research goals

The objective of this research is to explore Remote Warning Score Monitor-
ing (RWSM): remote monitoring of patients dismissed from direct medical
care using automated EWS assessments.

Specifically, the following questions are asked:

• Can an RWSM system, feasible for everyday use, be implemented using
smart medical devices commercially available today?

• What are the technical and operational challenges of implementing
such a system?

• Can existing, validated EWSs be utilized in RWSM?

1.6 Tasks

The research questions stated above were pursued by designing, imple-
menting and deploying an RWSM system which utilizes a clinically vali-
dated EWS, followed by a feasibility study examining its everyday use, and
a subsequent evaluation of the study.

A detailed outline of each step taken to carry out this investigation is shown
here:

1. EWS selection: identification of an EWS which is:

• widely recognized

• clinically validated

• applicable for adult patient evaluation

• capable of assessing the overall risk of patient deterioration



10

• not limited to specific patient populations

2. Device selection: procurement of smart medical devices that:

• are commercially available and have clinical approval for medical
use

• offer user-friendly, non-intrusive measurement procedures, suit-
able for the patient to use at home and on the go

• allow secure and automated retrieval of the vitals data needed to
calculate the chosen EWS via an Application Programming Inter-
face (API)

3. System design and implementation: development of a software ap-
plication facilitating RWSM using the selected medical devices, ensur-
ing:

• regular vitals data capture from patients

• accurate calculation of the chosen EWS based on captured data

4. Real-world usability trial: conduction of a trial, wherein a test sub-
ject utilizes the implemented system in real-world conditions, collect-
ing data useful for system evaluation.

5. Evaluation: methodical review of the implemented RWSM system:

• Analysis of the effectiveness of the system in regularly gathering
vitals data and EWS samples

• Investigation of failure points when sample retrieval or EWS as-
sessments were unsuccessful

• Collation of the subject’s feedback on user experience

6. Feasibility and challenge discussion: reflection on the entire re-
search process to:

• draw conclusions on the feasibility of RWSM using modern smart
medical sensors

• discuss application of the chosen EWS for RWSM

• highlight the identified technical and operational challenges

By completing these tasks, the research provided a comprehensive under-
standing of the practicality and potential pitfalls of RWSM in everyday set-
tings, using current technology.
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2 Medwings

The initial step in conceptualizing an RWSM system was to choose an ap-
propriate EWS to use for patient health evaluation. Three widely used
EWSs were evaluated as potential candidates: the Pediatric Early Warn-
ing Score (PEWS)[58], NEWS2[12] and MEWS[2]. All three are established
as being effective in predicting clinical deterioration. PEWS was excluded
due to its application being limited to pediatric patients. The choice be-
tween MEWS and NEWS2 was made by considering the input parameters
to each score’s calculation: compared to MEWS, NEWS2 takes into account
whether a patient is currently suffering from hypercapnic respiratory fail-
ure, and whether or not the patient is currently being ventilated using sup-
plemental oxygen. These parameters are generally not applicable to pa-
tients dismissed from medical care, hence MEWS was chosen as the early
warning score for the envisioned RWSM system.

To calculate the MEWS, the following vital parameters must be recorded
and processed:

• Heart Rate

• Blood Pressure (systolic)

• Body Temperature

• Respiratory Rate

• AVPU Score (AVPU)

To develop an RWSM system capable of gathering these vital signs andmak-
ing them accessible remotely, wirelessly networked vitals measurement de-
vices were used. The process of selecting the right smart sensors presented
a series of challenges. A significant portion of the available medical sen-
sors on the market were either not accessible to the general public, or are
not distributed in the geographic area where the research was carried out.
While considering devices that met the procurement criteria outlined ear-
lier, a large number of products had to be excluded, as they would have
constrained patient mobility to the confines of their home or bedside. Sev-
eral promising devices were identified, but dismissed due to still being in
active development and having not yet received clinical approval.

Among a few options on the final shortlist, Withings emerged as the most
feasible choice for several reasons. Notably, they were the only manufac-
turer who offers a publicly accessible API, allowing for automated retrieval
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of vitals data. Consequently, three Withings devices were selected for the
study. The Withings Scanwatch[59], shown in Figure 2a is a smartwatch
capable of measuring a user’s Electrocardiogram (ECG) and Blood Oxygen
Saturation (SPO2) among other things. AWithings BPMCore[60], displayed
in Figure 2b, was also procured. It is a digital blood pressure meter capa-
ble of recording blood pressure and heart rate. The third and last device
used was a Withings Thermo[61], a contactless digital thermometer used
to measure body temperature. A picture of a Withings Thermo can be seen
in Figure 2c.

(a) Scanwatch (b) BPM Core (c) Thermo

Figure 2: Withings smart medical devices (image sources: Withings Scan-
watch[59], Withings BPM Core[60], Withings Thermo[61])

All three devices are capable of synchronizing vitals data with the Withings
Cloud over the internet, as they connect to the user’s phone using a mobile
application provided by Withings.

The chosen selection of devices allows measurements and programmatic
access to the vital parameters required to determine a MEWS, with some
caveats: the AVPU score cannot be measured remotely, as it necessitates
a clinical assessment from medical staff. Additionally, the inclusion of the
Withings Scanwatch came with a notable limitation: although the device
possesses the capability to measure a patient’s respiration rate, this func-
tionality is restricted to nocturnal measurements, taken while the user is
asleep.

To address these issues, a decision was made to forgo the traditional res-
piration rate measurement, as well as the AVPU parameter in the MEWS
calculation. Instead, a custom respiration score was introduced, shown in
Table 5, which represents any shortness of breath reported by the patient.
To ensure the clinical soundness of these modifications, expert consulta-
tions were sought from an anesthesiologist and a pediatrician, each with
over 30 years of practical experience in intensive care medicine. The pe-
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diatrician affirmed that due to the difficulty of accurately measuring respi-
ration rate in practice, an audiovisual inspection of breathing, as well as
patient-reported symptoms of shortness of breath, are often utilized as reli-
able substitutes. Following the expert consultation, the patient’s SPO2 level
was used to replace the respiration rate in combination with the described
respiration score. The anesthesiologist affirmed that the AVPU score is in-
herently unsuited for automated electronic measurement, as it requires a
human evaluation of the patient’s level of consciousness. Given that a pa-
tient with a compromised level of consciousness would be unable to interact
with the Medwings system, under expert guidance the decision was made
to omit the AVPU score entirely.

Condition Score
Patient is not suffering from shortness of breath 0
Patient is experiencing some shortness of breath 1
Patient is suffering from severe shortness of breath 2

Table 5: Scoring table for Medwings’ custom respiration score

2.1 Requirements

Following the selection of an EWS and suitable medical sensors, a com-
prehensive RWSM application was conceptualized, dubbed as the Mobile
Early Deterioration Warning System (Medwings). Prior to its development,
several key software requirements for the application were determined.

2.1.1 Functional Requirements

User Authentication: Medwings must provide a robust user authentica-
tion and authorization system to ensure confidentiality of sensitive pa-
tient data, while preventing unauthorized access to restricted informa-
tion.

Portability: Patients must be able to access Medwings from their mobile
phone. Enabling access from other types of end user devices is also
desirable.

Data Collection: The applicationmust be capable of collecting and storing
vital sign readings from all three Withings smart medical sensors with-
out the need to transfer data manually. Additionally, it must be able to
determine the custom respiration score introduced earlier, by prompt-
ing patients on whether they are experiencing shortness of breath.
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Measurement prompts: To facilitate a regular MEWS assessment sched-
ule, the application must regularly prompt patients to take vital sign
readings.

MEWS Calculation: When sufficient vital signs for a patient are collected,
Medwings must automatically compute and store the MEWS.

Data Synchronization: Vitals data, MEWS measurements and any asso-
ciated metadata should be synchronized and accessible on each of the
patient’s end devices. Captured data should be stored by the system
for later analysis.

Data Visualization Patients should be able to view a history of their recorded
vitals and MEWS values.

2.1.2 Non-functional Requirements

Usability: Medwings should be intuitive and user-friendly, requiring mini-
mal technical expertise from end-users. The User Interface (UI) should
be adaptive for display on both mobile displays and larger monitors. If
measurements fail or errors occur, clear error messages should be dis-
played to the user.

Availability: The system should be available for patients to use at all times,
and from any location, with minimal downtime.

Data Validity: Vitals records retrieved from the smart sensor devices must
be converted and displayed correctly. Calculated MEWS values must
be correct and take into account all relevant vital parameters:

• systolic blood pressure

• heart rate

• body temperature

• SPO2

• respiration score

To ensure the medical validity of a MEWS assessment, when a set of
vitals measurements is used to calculate aMEWS, the time of measure-
ment for any two measurements in the set must not be further apart
than ten minutes.

Security: All personal and medical data must be handled in a secure man-
ner, both during storage and in transit. When transmitting data be-
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tween Medwings and Withings, or between a user’s end device and
Medwings, communication confidentiality and integrity must be en-
sured. The identity of both communication partners must be crypto-
graphically verifiable.

2.2 Design and Implementation

Medwings was designed as a web-based application, accessible through a
web browser. Opting for this format offers several advantages: the primary
benefit is its inherent cross-platform compatibility, enabling usage on awide
range of devices such as mobile phones and personal computers.

Adhering to the classic client-server paradigm, the Medwings design prior-
itizes centralized data storage and processing. This architecture was found
to be beneficial for simplifying data synchronization, facilitating secure au-
thentication, and ensuring high system availability.

Django, a high-level Python web framework, was employed to develop both
the frontend and backend components of the Medwings application. Some
of the primary motivations for selecting Django were its out-of-the-box user
authentication and session management capabilities. Such features sub-
stantially expedited the development process, freeing up time and resources
to focus on the more unique functionalities of the Medwings web applica-
tion. Furthermore, Django’s integrated Object-Relational Mapping (ORM)
system greatly simplified the creation, management, and querying of the
application’s database. This was pivotal given the essential role of the
database in storing vitals data.

While web applications offer many advantages, one limitation is their in-
creased design complexity required to support push notifications directly
on the patient’s mobile phone. To simplify this aspect of the design, a sepa-
rate push notification microservice was deployed on premise and integrated
with Medwings. Considering the time constraints under which the applica-
tion was developed, this approach proved to be an effective compromise.

2.2.1 Architecture

The overall system environment is shown in Figure 3, depicting the follow-
ing workflow:

1. A patient receives a notification on their mobile phone, prompting them
to take vitals measurements.
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Figure 3: System diagram showing data flow and user interactions be-
tween components in the Medwings environment.

2. Upon opening the notification, they are redirected to the Medwings
website. Here, they are prompted to self-assess their respiration score
by answering a short questionnaire, followed by a prompt to take one
measurement on each Withings device.

3. When a measurement is completed, each device transmits the data via
Bluetooth to the Withings mobile app, installed on the user’s phone.
The mobile app now sends the data to the Withings Cloud for storage.

4. A backend process on the Medwings server awaits the arrival of all
recorded measurements from the Withings Cloud, storing them upon
reception. Once all required vitals measurements have been retrieved,
the MEWS is calculated, stored and displayed to the patient.

Throughout the day, measurement prompt notifications are dispatched to
the patient at regular intervals.
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2.2.2 Modules

To separate the different functional aspects of Medwings according to re-
sponsibility, its application code is split into the following five modules:

• core

• withings

• gotify

• authentication

• medwings

Eachmodule defines classes representing backend logic, database schemata
and user interface elements pertaining to its specific function. Implemen-
tation details are encapsulated within these classes, while public interfaces
are exposed to external program code to provide each module’s core func-
tionality.

The core module forms the backbone of the application. It encompasses
configuration settings, handling of secrets such as private encryption keys
or API tokens, and functionalities shared across multiple other modules.
This includes backend utility functions and shared UI components for the
frontend.

Medwings interfaces with the Withings Cloud through the withings mod-
ule. Responsibilities include retrieving vitals data through authenticated
requests to the Withings Cloud API, which implements the OAuth 2.0 Au-
thorization Framework. As per its specification, “In OAuth, the client re-
quests access to resources controlled by the resource owner and hosted by
the resource server. . . Instead of using the resource owner’s credentials
to access protected resources, the client obtains an access token. . . The
client uses the access token to access the protected resources hosted by
the resource server. ”[62] While this process is largely transparent for the
resource owner — the patient in this case — the communication between
Medwings as the resource client and Withings as the resource server is
complex, and is therefore abstracted by the module. Aside from OAuth 2.0,
withings also encapsulates fetching, parsing, and storing vitals data re-
trieved from Withings.

Medwings implements a standalone user authentication system, which is
provided by the authentication module. Patients must register with a user-
name and password to be able to use the application. The registration oc-
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curs in three stages:

1. The patient grants Medwings the permission to retrieve their health
data from Withings in an OAuth2 authorization flow. This process is
shown in Figures 4a and 4b.

2. A registration form, displayed in Figure 4c, is shown, prompting the
user to choose a username and password, and to enter relevant per-
sonal information.

3. The user is shown a confirmation that the account was created success-
fully, and is asked to download the Gotify app, described below, and log
in using their Medwings credentials. Figure 4d shows this final step.

Following registration, the supplied information and numerous authentica-
tion tokens are saved in the Medwings database. The patient can now log
in to the Medwings website and begin using the system to take vitals and
MEWS measurements.

(a) User signup
initialization

(b) Withings
OAuth 2.0 grant

(c) User details
prompt

(d) Registration
finalization

Figure 4: Medwings user registration process

Managing a user in Medwings requires the respective user’s state to be
mirrored by two other services, Withings and Gotify. The authentication
module ensures that user accounts across all three services are kept in
sync. Particularly during user creation, user accounts must be linked to
Withings, created on the Gotify server and finally saved to the Medwings
database. Various integrity checks, such as when the user aborts the reg-
istration process midway, are put in place to prevent diverging user states
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across the three services.

The medwings module, pivotal to the core functionality of Medwings, defines
the data model used to represent and store the various vital signs handled
by the application. Furthermore, it provides interfaces to access the data,
as well as the algorithm used to calculate the MEWS, which is listed in
Algorithm 1.

Input: blood_pressure_systolic, body_temperature, heart_rate,
spo2, respiration_score

Output: mews

mews← 0

if blood_pressure_systolic ≤ 70 then
mews← mews+ 3

else if blood_pressure_systolic ≤ 80 then
mews← mews+ 2

. . .
// systolic blood pressure, body temperature

// and heart rate as per Table 1

if respiration_score = 1 then
mews← mews+ 1

else if respiration_score = 2 then
mews← mews+ 2

if spo2 ≤ 90 then
mews← mews+ 2

else if spo2 < 95 then
mews← mews+ 1

return mews

Algorithm 1: Medwings MEWS calculation

A MEWS calculation should represent the patient’s overall physiological
state at – ideally – a discrete point in time. Naturally, there is a delay from
when a measurement is taken with a device until it can be retrieved from
the API. The transmission delays are mentioned in the Withings public API
documentation: “Delays are typically less than two minutes, but it can be



20

longer.”[63]. However, in some cases, the measurements taken on a device
do not get pushed to the Withings Cloud until much later. While the cause
for these longer than normal delays and missing data points is unknown
and outside of the control of Medwings, these edge cases had to be taken
into account. The time it takes a patient to take measurements using all
three devices must also be accounted for. Therefore, Medwings enforces a
maximum allowed time difference of ten minutes between measurements
of the different vitals records used to calculate the MEWS. If a set of vitals
measurements is, across all records in the set, spaced further apart than
ten minutes, no MEWS record is calculated, and the user is shown an error
message.

Vitals records kept in the Medwings database must be synchronized with
all records available on the Withings cloud. Regularly recurring, as well as
on-demand data synchronization hooks are used by the medwings module to
keep the Medwings database up to date, while database constraints ensure
validity of imported data and prevent duplication of existing records.

In order to send push notifications to mobile devices, Medwings leverages
Gotify – a dedicated notification microservice[64]. Gotify is composed of
a web server component, and a mobile app acting as the client software.
The server exposes its own API, which allows external applications like
Medwings to dispatch push notifications programmatically. It uses an in-
dependent database for client authentication. The gotify module ensures
synchronization between the user databases of Gotify and Medwings. In
addition, the module provides interfaces to send customized push notifica-
tions to specific patients.

2.2.3 User Interface

The Medwings UI was developed with specific design goals in mind to en-
sure an efficient and intuitive user experience. Figure 5 provides some
impressions of what a user sees when using the application.

Aiming for a clutter-free and fast user experience, simplicity served as the
guiding principle to enhance usability. A focus was put on developing accessibility-
friendly UI components, ensuring that the system is usable by visually im-
paired individuals.

Security was a top priority in the frontend implementation to protect users
and the system from common vulnerabilities. Overall, the use of JavaScript
was kept to a minimum to reduce the attack surface. Various security mea-
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(a) Medwings home
page

(b) Starting a measure-
ment

(c) Waiting for synchro-
nization

Figure 5: Medwings UI screenshots

sures were carefully put in place to reduce the attack surface of the website:

• User input and form field sanitization, alongside strong server-side val-
idation to prevent cross-site scripting (XSS) and SQL injection attacks

• To counteract cross-site request forgery (CSRF) attacks, CSRF tokens
were implemented on all forms

• To minimize the risk of supply chain and third-party XSS attacks, no
external JavaScript dependencies are used by Medwings

Considering that mobile devices are the primary platform for Medwings,
the UI was designed to be fully responsive. It adapts seamlessly to different
screen sizes, whether accessed through mobile phones, tablets, or devices
with a larger form factor. Fast load times were a crucial design goal to
ensure usability under various network conditions.

Navigational elements and the overall layout follow conventional patterns.
Animations are sparingly used to visually indicate in-progress system states,
such as when waiting for data retrieval from the Withings Cloud.



22

2.2.4 Datamodel

A relational database was used to store application data, whereby each
Medwings module defines the database schema for the underlying data it is
responsible for handling. Module interdependencies correlate closely with
the foreign key references in the data model. A holistic representation of
the Medwings data model is shown in Figure 6.

Figure 6: Entity-Relationship diagram (Crow’s Foot notation) showing the
data model of the Medwings database.



23

At its heart lies the User entity: it forms the nexus to which all vitals
data and user information is linked. Withings API tokens are stored in
the RefreshToken and AccessToken entities, while the GotifyUser and the
GotifyAccount entities retain the Gotify API credentials. The numerous vi-
tal signs, as well as the MEWS record which can potentially be calculated
based on them, are also represented. The Profile table stores additional
medically relevant patient information as supplied during user registration.

2.2.5 Deployment

To use the smart devices to take measurements, patient users must first in-
stall the Withings mobile app on their phone, and use it to create a Withings
user account. Following registration, each device must be linked to the app
and configured via Bluetooth. Some basic configuration is required in or-
der to enable specific device features, such as measurement of SPO2 on the
Scanwatch. Users are guided through the process by the app’s Graphical
User Interface (GUI).

Being a web application, no installation is necessary to access the Med-
wings interface, patients simply visit the website in a web browser. Patients
do need to create a Medwings account on the website however, followed by
installation and configuration of the Gotify mobile app, as described in the
registration process in Section 2.2.2.

The centralized server components, including the Gotify server, a task sched-
uler used to schedule sending notifications and the Medwings application
code itself are deployed on a publicly accessible web server using a Docker
container environment.

3 System test and trial

Following the development and deployment of the application, Medwings
underwent a performance and usability study. Over the course of one week,
a male test subject aged 29, impersonated a patient by using the application
several times a day.

Each day, five notifications were dispatched. Starting at 10 AM, one noti-
fication was sent every three hours. When prompted by a notification, the
subject was asked to visit the Medwings website and begin the measure-
ment process. Following a notification, the measurements were carried out
in the following order:
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1. The subject responds to a Medwings prompt to assess their respiration
score.

2. Using the Scanwatch, the subject starts an SPO2 measurement and
awaits its completion.

3. A blood pressure and heart rate check is initiated on the BPM core,
and the subject waits for the results.

4. The subject takes a body temperature reading via the Thermo and
waits for it to complete

5. Finally, the subject allows time for Medwings to aggregate all the data
and display the MEWS.

Throughout this process, Medwings would continuously attempt to retrieve
the vital sign readings from the Withings Cloud, and calculate the MEWS
once all required readings are available. If not all readings could be re-
trieved within the ten minute timeout, Medwings displayed an error mes-
sage and aborted the MEWS measurement process.

3.1 Methodology

For each vital sign measurement, as well as for each MEWS calculation,
Medwings stored the measurement results alongside the time of measure-
ment.

For each received notification, the test subject manually kept track of which
environment the system was used in. A distinction was made between the
following environments:

• At home: The subject was located at home, and their end device had
access to a low latency broadband internet connection

• On the go: The subject was away from home, and their end device had
access to a high latency mobile internet connection

The end device used by the subject to connect to Medwings was their phone
throughout the trial. In addition, the subject reflected on noteworthy expe-
riences regarding use of the system after the trial was completed.

The occurrence of measurement failures was anticipated, and manually
recorded. Measurement failures were categorized into eight distinct classes,
as listed in Table 6.

The Scanwatch and BPM Core are equipped with accellerometers[59, 60].
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Device Failure Class Description

Scanwatch S1 Device aborted measurement
S2 Measurement synchronization failure

BPM Core B1 Device aborted measurement
B2 Measurement synchronization failure

Thermo T1 Device aborted measurement
T2 Measurement synchronization failure

— P1 Patient did not take any measurements
P2 MEWS calculation timed out

Table 6: Classification of measurement failures during the usability trial

If erratic movement is detected, the devices abort the measurement to
avoid misinterpretation of sensor readings. Similarly, upon failure to pro-
cess captured sensor data into a plausible result, a measurement may be
aborted by the device[65, 66, 67]. The measurement failure classes S1, B1

and T1 were used to record these kinds of failure for the Scanwatch, BPM
Core and Thermo respectively. Following an S1, B1 or T1 failure, the sub-
ject repeatedly carried out measurements using the affected device until a
valid reading could be obtained. Subsequent failures caused by the device
aborting measurements were also recorded. The count of “device aborted
measurement”-failures of each device was compared to the total number of
measurement attempts using that device.

As explained in Section 2.2.2, following a successful reading, a device may
fail to push the measurement data to the Withings Cloud within the ten
minute validity range for a MEWS calculation imposed by Medwings. De-
pending on whether the Scanwatch, BPM Core or Thermo failed to synchro-
nize its data within the allowed time, an S2, B2 or T2 failure was recorded
respectively. The number of measurement synchronization failures which
occurred was compared to the number of successfully synchronized mea-
surements for each device. Following an S2, B2 or T2 failure, the measure-
ment process was not repeated until the next notification.

For each notification to which the subject responded, the duration between
when the notification was dispatched and when the patient took the first
vitals measurement was recorded. Additionally, the average time taken to
complete all three vitals measurements was noted. If the subject did not
visit the Medwings website or carry out any vitals measurements despite
being prompted by a notification, a P1 failure was noted. Finally, if the pa-
tient failed to carry out all three required vitals measurements within the
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ten minute time limit, a P2 failure was recorded.

Preceding each MEWSmeasurement, metrics quantifying the quality of the
connection between the subject’s end device and other devices across the
internet were measured. This was done by sampling and averaging the
data transmission rates, both uplink and downlink, as well as the connec-
tion round trip times from the end device to a distant reference server, the
location of which was kept constant throughout the trial. The collected
connection metrics were compared with the occurrence of measurement
synchronization failures.

3.2 Results

The trial period encompassed seven days, on each of which five notifications
were dispatched to the patient. Thus, an overall of N = 35 system interac-
tions were recorded. The patient was at home during 26 of these, and on
the go in all other cases.

Seven P1 measurement failures occurred, wherein the patient did not react
to a received notification by taking measurements. Out of these, five oc-
curred while the patient was on the go and, notably, four P1 failures were
consecutive, stemming from a period of 24 hours during which the patient
did not have access to the smart devices. No P2 measurement failures oc-
curred during the trial. The patient reported feeling reluctant about taking
measurements using the devices in public spaces, compared to the privacy
of their home.

In total, vitals were measured using all three devices in 28 cases. However,
in 11 cases, at least one device failed to synchronize its measurements with
the Withings Cloud within the ten minute timeout. Throughout the trial,
17 MEWS calculations were recorded successfully. Figure 7 visualizes the
overall measurement and failure counts.

Out of 84 successful individual vitals measurements across all devices through-
out the trial, 18% took longer than permitted by Medwings to synchronize
with the Withings Cloud. Particularly while on the go, synchronization was
prone to taking too long: 25% of measurements resulted in synchronization
failure, compared to 11% at home. Especially the BPM Core and Thermo
devices suffered from slow synchronization times: in a total of 15 synchro-
nization timeouts, nB2 = 7 were caused by the blood pressure meter, and
nT2 = 7 by the thermometer.
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Figure 7: Measurement and measurement failure statistics at home and
on the go.

The likelihood of each device aborting a measurement due to inconclusive
sensor data was examined and is visualized in Figure 8. For the BPM Core,
15% of attempted measurements had to be repeated (nB1 = 5). For the Scan-
watch, over 34% of readings (nS1 = 15) were inconclusive and had to be re-
peated. The Withings Thermo did not abort any measurements (nT1 = 0).

Figure 8: Number of measurement attempts and aborted measurements
for each smart device.

Figure 9 illustrates the comparative box plots for the downlink datarate,
uplink datarate, and Round trip time (RTT) connection metrics when the
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patient was at home versus on the go. While there are evident differences
in the distributions of these metrics between the two environments, the
points representing synchronization failures do not predominantly cluster
around areas of low data rate or high RTT.

Figure 9: Connection quality and synchronization failures.

A reaction delay tr existed from when a notification was dispatched until the
subject visited the Medwings website to take measurements. The average
(tr,home = 36 min) and median (Mtr,home = 33 min) delay was significantly lower
when the patient was at home, compared to when they were out of the house
(tr,on the go = 68 min,Mtr,on the go = 70 min). The patient reported feeling fatigued
by the regularity of the notifications from the second trial day onward.

The average time it took the patient to carry out all three measurements
was 4.5 minutes, with no significant difference between the “at home” and
“on the go” environments.

In all cases where vitals measurements were taken using the devices, the
vitals data was captured and stored by Medwings. In cases where the mea-
surement data was not uploaded to the Withings Cloud quickly enough for
Medwings to calculate the MEWS, the recorded vitals data was still pulled
into the Medwings database. Across all measurements, the subject’s vital
signs were within normal ranges, with the exception of two outliers where
a slightly increased heart rate was measured. Both outliers were detected
by Medwings in the form of an elevated MEWS.

The complete trial data is listed in Appendix A.
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4 Discussion

The usability study of the Medwings system provided valuable insights into
the system’s performance, reliability, and user interaction experience. Clas-
sifying measurement failures into types helped to identify bottlenecks and
other areas for improvement. Overall, the Medwings system was successful
in retrieving a wide range of vital signs from the patient at regular inter-
vals, and detected abnormal readings using theMEWS. The system success-
fully aggregated data from multiple sources to compute the MEWS, and all
MEWS calculations carried out by Medwings resulted in the correct value
based on the recorded vitals data. Both at home and on the go, the patient’s
vital parameters could be monitored using the system. While at home, the
patient was able to take all vitals measurements quickly and accommodate
the measurement process into their daily routine, leading to a high rate of
interaction with the system. Within the limited trial period, Medwings was
able to detect abnormal readings effectively.

A significant portion of recorded vitals data, however, could not successfully
be converted into MEWS records. These calculation failures pertained to
device synchronization delay with the Withings Cloud, highlighting a criti-
cal issue. The BPM Core and Thermo devices synchronize only when turned
on through manual interaction. This leads to longer sync times for these
devices, inhibiting Medwings from accessing new vitals data swiftly and
performing a timely MEWS calculation. A timeout period more lenient than
the ten minute window imposed by Medwings may reduce the rate of syn-
chronization failures, but it may also negatively impact the validity of a
MEWS record if implemented. The study found that connection metrics
such as data transmission rates and round-trip times did not show a signifi-
cant correlation with synchronization failures. This suggests that other fac-
tors, likely server-side processing delays on the Withings Cloud, contribute
to these failures.

The study also revealed that the system is generally more reliable when the
patient is at home, as indicated by the low interaction rate while on the go.
One reason was that carrying a a range of vitals sensors while out of the
house is not always feasible. Another was the subject’s reluctance to take
measurements in public spaces, suggesting a need for more discreet solu-
tions for on the go vitals monitoring. However, when measurements were
made in the mobile environment, Medwings was successful at aggregat-
ing the measured data and, aside from the aforementioned synchronization
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issues, was able to calculate the subject’s MEWS.

While at home, the test subject was able to adhere well to the measurement
schedule, missing measurements only twice throughout the week. With a
three-hour window to respond to each notification, the average response
time of 36 minutes and the minimal number of P1 failures show that the
4.5-minute measurements were manageable within the home setting. On
the go however, a significant portion of the received notifications were not
followed up by vitals measurements. When leaving the house for extended
periods of time, the subject was not always able to bring the whole array
of medical devices with them. Additionally, taking measurements could not
always be done discreetly in public spaces, and finding a private area to
take measurements was not always possible. This lead to a high rate of P1

failures on the go, coupled with a comparatively long average reaction time
of tr,on the go = 68 minutes.

The rate at which device synchronization failures occurred was high, with
39% of successful measurements not being pushed to the Withings cloud in
time for a MEWS calculation to be valid. A combination of three factors was
determined to be the cause for this.

Firstly, while the Scanwatch is constantly connected to the patient’s phone,
the BPM Core and Thermo devices only establish their Bluetooth connec-
tion intermittently. Presumably, measurement data updates from these de-
vices are sent to the phone less frequently than for the Scanwatch. This
is strongly underlined by the fact that 93% of all synchronization timeouts
were caused by the BPM Core or Thermo.

The second factor becomes apparent after examining the likelihood of each
device aborting its measurement due to inconclusive sensor data, as dis-
played in Figure 8. Although the aborted measurements did not cause syn-
chronization failures directly, the time taken to repeat measurements im-
pacted the likelihood of the MEWS calculation timing out before all vitals
data was synchronized. The Scanwatch was particularly prone to prolong-
ing the overall time it took the patient to complete all readings.

The third factor was the time it took the Withings app to push vitals data to
the Cloud, and data being available for retrieval through the Withings API.
While no concrete data to quantify this duration could be gathered, it is
clear that the two minute delay estimate provided by the manufacturer[63]
was exceeded substantially in many cases. The relationship between the
connection quality and the likelihood of synchronization failures was exam-
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ined, as shown in Figure 9, but no correlation was found, suggesting that
synchronization failures were not majorly influenced by the current connec-
tion quality of the subject’s end device.

Ultimately, while 61% of notifications to which the patient responded did
result in a successful MEWS calculation, the high rate of device synchro-
nization timeouts suggests that routing data from the device, to the mobile
app, to the Withings cloud, and finally to the Medwings server introduces
substantial delays, thereby affecting the system’s usability for its near-real-
time calculation requirement.

In terms of its software design, the Medwings application successfully met
its predetermined software requirements. The system demonstrated robust
user authentication mechanisms and offered portability by being accessi-
ble on mobile phones. Additionally, it provided an intuitive interface for
data visualization. Vital signs were collected and stored automatically from
all three Withings smart medical sensors, and the respiration score was
able to be determined interactively. The system was consistently available
and ensured data validity, while maintaining stringent security protocols.
While certain challenges were encountered during the usability trial, the
software’s overarching objectives in terms of functional and non-functional
requirements were successfully achieved.
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4.1 Limitations

Several limitations of the current study and the Medwings system must be
noted.

Firstly, the original MEWS algorithm could not be used in its unaltered form
to facilitate automated deterioration scoring. Measuring the respiration
rate and AVPU of a mobile patient presented a challenge, which had to be
overcome by disregarding the AVPU from the calculation and replacing the
respiration rate in favor of a custom respiration score and SPO2 measure-
ments.

Furthermore, the usability study had only a single test subject, which does
not capture the diversity of potential user experiences. Due to time con-
straints, the trial period was limited to lasting only one week, reducing the
sample size and potentially introducing bias in the gathered data.

Measurement prompts were dispatched every 3 hours during the day. This
allows for just a restricted, intermittent view of a patient’s physiological
state, and the chosen sampling period may require adequate adjustment.

Moreover, although designed and implemented as amulti-user system, Med-
wings was only tested with one active user. When used by many more users,
the proof-of-concept system may encounter scalability issues, such as ex-
ceeding the API rate limits imposed by Withings. The non-enterprise With-
ings API enforces a rate limit of 120 requests per minute. Medwings polls
the API regularly to retrieve the latest health data for patients. At scale,
with many patient users, the rate limit would quickly be reached. The With-
ing API does provide functionality to notify client applications upon avail-
ability of new data, making it possible to avoid polling. Given thatMedwings
was only used by a single patient user during the trial phase, falling back
to polling was an acceptable compromise to lower complexity while still
operating within the rate limit.

Another significant limitation pertains to data security and privacy. The
Medwings system replicates sensitive patient data, which is already stored
in the Withings Cloud, in its own database. This dual storage increases
the attack surface for breaches of sensitive data, posing a risk to patient
privacy. Ideally, removing the need to store vitals data either in theWithings
Cloud or in the Medwings database would improve the system’s privacy and
security.

Furthermore, the system’s complexity during initial setup poses a notable
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limitation. Users must undergo a multi-step process: signing up for With-
ings, pairing medical devices, registering for a Medwings account, and fi-
nally, logging in to the Gotify application. This makes the system less ac-
cessible, particularly for elderly patients or those less technically inclined.
Although necessitated by current resource limitations, a more streamlined
setup process could have been achieved with additional development time
and funding. For example, integrating Medwings and Gotify into a single
mobile application would significantly ease the setup process. TheWithings
enterprise API plan can be utilized to manage OAuth2 user accounts[68],
eliminating the need for a separate Medwings user database and thus fur-
ther simplifying user registration.

Lastly, using Medwings and the smart medical devices requires the patient
to have internet access, which will negatively impact the system’s effective-
ness in some circumstances where a stable connection is not available.
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4.2 Future Work and Improvements

The Medwings system, while successful in its current iteration, offers mul-
tiple avenues for improvement.

Its dependence on web-based access to the Withings API to retrieve vitals
readings results in significant delays and mandates an internet connection.
A native mobile application offering direct Bluetooth access to sensor mea-
surements would enhance real-time responsiveness and negate the neces-
sity for a stable internet connection. Unfortunately, Withings do not offer
such an option to developers. Vendor dependence in general introduces a
risk to Medwings’ continued operation. Service outages, discontinued de-
vice updates, or the vendor ceasing business operations all render the smart
devices, and consequently Medwings, unusable. Vendor-independent ac-
cess and open-source firmware for themedical devices wouldmitigate these
risks and open up exciting possibilities for further system integrations.

Additionally, expanding the range of monitored vitals could allow imple-
mentation of more comprehensive RWSM techniques. The integration of a
smart device capable of accurately measuring the respiration rate of a mo-
bile patient would refine the MEWS calculations, leading to a more accu-
rate deterioration monitoring system. The system could also benefit from
real-time alerting for emergency situations, rather than relying solely on
periodic MEWS calculations. This would not only make the system more
robust but would also be crucial for immediate medical intervention. For
healthcare providers, a monitoring platform could be developed to allow
medical staff to have direct visibility into their patient’s vitals and recent
developments.

Intermittent vitals monitoring presents an incomplete picture of the pa-
tient’s health status. A continuous monitoring system would not only im-
prove the system’s efficacy[36, 14], but could greatly enhance the sampling
frequency and obviate the need for manual patient interaction for taking
measurements.

Given more development time, a range of auxiliary features could be in-
tegrated into Medwings. Native mobile notifications, more detailed vitals
analysis, and utilization of additional functionalities available in Withings
devices would elevate the system’s overall capabilities and usefulness. As
technology advances, future work could explore machine learning models
to predict potential health anomalies based on historical data.
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5 Conclusion

The objective of this research was to explore the feasibility and of an RWSM
system for use by outpatients, using commercially available smart medical
devices. The Medwings system was successful in demonstrating the feasi-
bility of such an approach. Key operational challenges and successes were
identified, providing insights for the future development and refinement of
systems in this domain.

The research found that RWSM is feasible. While the MEWS could not be
directly applied in its unaltered form, the use of consumer-grade smart de-
vices in the Medwings system successfully facilitated remote patient moni-
toring in combination with EWS assessments.

Given the rapidly evolving market for advanced smart medical devices, the
implications for healthcare providers are significant. Potentially freeing up
medical resources and improving patient mobility and autonomy by allow-
ing for earlier dismissal of patients from care facilities, systems such as
Medwings may hold considerable value.

While the Medwings system has demonstrated the feasibility of RWSM, it
remains somewhat rough around the edges. Continued research in this area
is essential to enhance the robustness and effectiveness of RWSM systems.
The potential for life-saving interventions via automated alerts makes the
case for a more robust system compelling. Although the current system
uses a web-based client-server architecture, alternative approaches should
be explored. Research into the development of a local, body-area-network
system could offer improved reliability and responsiveness.

In conclusion, the research has successfully filled an important knowledge
gap in the field of remote patient monitoring with early warning scores, and
outlines the scope for future advancements. Given the continuing techno-
logical advancements in smart medical devices, the future appears promis-
ing for the adoption and refinement of systems like Medwings for better
patient care and resource optimization in healthcare.
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Glossary

Application Programming Interface

A set of rules and protocols that allow different software entities to
communicate with each other. It defines the methods and data formats
that applications can use to request and exchange information. APIs
are utilized to enable the integration between different systems and
devices, streamlining their functionalities and expanding capabilities.

AVPU Score

A rapid assessment method to determine a patient’s level of conscious-
ness. The AVPU scale is used to quickly identify potential neurological
impairment or altered mental status in emergency settings. The four
possible findings are:

• Alert: Patient is fully alert and oriented.

• Voice: Patient responds to verbal stimuli but is not fully alert.

• Pain: Patient responds only to painful stimuli.

• Unresponsive: Patient does not respond to any external stimuli.

Blood Oxygen Saturation

A percentage measure indicating the level of oxygen saturation in the
blood. The blood oxygen saturation represents the proportion of hemoglobin
molecules in the bloodstream that are saturated with oxygen[69].

deterioration

A decline in a patient’s health status marked by worsening of clinical
signs and symptoms, often necessitating escalated medical interven-
tion.

downlink datarate

The rate at which data is received by a client device from a central
server or network. Expressed often in Mbps, it reflects the download-
ing or data reception efficiency of a network connection.

Early Warning Score

A clinical tool used to assess the severity and likelihood of patient de-
terioration by scoring multiple vital signs.
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Electrocardiogram

A medical test that measures the electrical activity of the heartbeat to
diagnose various heart conditions.

Modified Early Warning Score

An adaptation of the Early Warning Score, which provides a simpli-
fied scoring system based on fewer physiological parameters to predict
medical deterioration.

National Early Warning Score 2

The second iteration of a standardized scoring system used in the UK to
detect and respond to clinical deterioration in adult patients. It builds
upon and refines the original NEWS score.

Pediatric Early Warning Score

An early warning score used to identify early signs of deterioration in
pediatric patients.

Remote Warning Score Monitoring

An approach that integrates RPM of mobile patients with the auto-
mated calculation of an EWS. It enables real-time assessment of pa-
tient deterioration risk based on data gathered remotely.

remote patient monitoring

A technology to enable monitoring of patients outside of conventional
clinical settings, such as in the home or in a remote area, which may
increase access to care and decrease healthcare delivery costs.

Round trip time

The time taken for a data packet to travel from a source to a destination
and back again. It provides an indication of the latency or delay inher-
ent in a network connection and is usually measured in milliseconds
(ms).

uplink datarate

The speed at which data is transmitted from a client device, such as
a computer or smartphone, to a server or central network. Typically
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measured in Mbps (megabits per second), it represents the efficiency
of data sending capabilities of a network connection.
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Acronyms

API

Application Programming Interface

AVPU

AVPU Score

ECG

Electrocardiogram

EWS

Early Warning Score

GUI

Graphical User Interface

ICU

intensive care unit

IoT

Internet of Things

MEWS

Modified Early Warning Score

NEWS2

National Early Warning Score 2

PEWS

Pediatric Early Warning Score

RPM

Remote patient monitoring

RTT

Round trip time
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RWSM

Remote Warning Score Monitoring

SPO2

Blood Oxygen Saturation

UI

User Interface
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