Cookiejar Kintsugi: Reviewing the state of web
application session security

Julian Lobbes
j.lobbes@tu-braunschweig.de
Technische Universitit Braunschweig
Braunschweig, Niedersachsen, Germany

Abstract

A large number of web applications store sensitive informa-
tion about their users. Access to this information is often
managed in the form of web sessions, which are attractive
targets for malicious actors. This paper is a review of existing
literature, outlining the methods used to handle the shared
secrets pertaining to web sessions, common attacks used to
discover these secrets, and defenses used to protect them. We
also review existing empirical studies which have attempted
to uncover the prevalence of web session vulnerabilities in
the wild, showing that existing defensive mechanisms are
often misused or underutilized.

CCS Concepts: « Security and privacy — Web applica-
tion security.

Keywords: Session security, Cookie hijacking, Empirical
analysis, Review

1 Introduction

Web applications have existed as a large part of the internet
ecosystem ever since it has become accessible to the wider
public in 1993 [11]. Transfer of information between websites
and their users occurs using the Hyper Text Transfer Protocol
(HTTP).

The protocol was designed for stateless communication,
but most web applications need to store state information
in between requests, for instance to track whether a user is
already authenticated [4]. Thus, web applications require a
mechanism for sharing and storing state information with
clients in order to track the user’s identity across HTTP
requests.

Different methods exist to implement such a tracking
mechanism on top of HTTP. Most commonly, session identi-
fiers (SIDs) are used [17] in the form of a cookie [5]. Since
SIDs are often used to authenticate a client accessing a web
application and its protected resources, the SID must remain
a shared secret between client and server, inaccessible to
third parties.

Ensuring the confidentiality of session identifiers has proven
to be difficult since the inception of web applications [10].
Many attack vectors have been identified in the past [13],
and security features and methods were added to existing
protocols retroactively [9] in order to patch these cracks. We
outline the background of the underlying technology used

to facilitate session management in web applications, and
explain the most common attacks against sessions and the
defenses against these attacks.

Finally, we review some previous studies which examine
the prevalence of session management vulnerabilities in the
wild, with a special focus on a fully automated session cookie
vulnerability scanning framework by Drakonakis et al. [6].
Their work introduces a novel method which makes large
scale analyses of session security in web applications pos-
sible, confirming previous findings [18] [19] [20] [17] [22]
which indicate the prevalence of these vulnerabilities in the

wild.

2 Background

For context, we provide a brief overview of the underlying
technologies and mechanisms pertaining to web applications,
session management and the internet in general.

2.1 Hyper Text Transfer Protocol (HTTP)

Content on the web is transferred using the text-based Hy-
per Text Transfer Protocol (HTTP), which adheres to the
client-server paradigm. The user-side client initiates commu-
nications by sending an HTTP request to a web server, most
commonly requesting a specific resource (often an HTML
document) from it. The server responds with an HTTP re-
sponse, indicating the completion status of the request and,
if applicable, the requested resource. Both requests and re-
sponses send metadata along with the transmitted message.
The attached metadata is sent inside the HTTP message
header, and the contents of the message are sent inside the
so-called message body.

Requests can take different forms [15], whereby the most
common types of HTTP requests are GET requests and POST

requests. It is important to note that GET requests do not

contain a message body, as they are intended to retrieve
resources from the server. Clients usually send data to a
server by issuing POST requests.

Historically, HTTP was intended as a simple way to ex-
change documents formatted in the Hyper Text Markup Lan-
guage (HTML) [8]. As such, it is stateless protocol, which
treats each request as independent from preceding requests [15].

HTTP messages are sent in clear text. In order to ensure
the integrity and confidentiality of requests and responses,
as well as authenticating the server, HTTP was formally

TUBS, July 21, 2022, TU Braunschweig, DE

extended to include a protocol specification for exchanging
messages which are encrypted using the Transport Layer
Security protocol (TLS) in 2000 [7]. This extension to HTTP
is called Hypertext Transfer Protocol Secure (HTTPS). To
ensure that all requests and responses exchanged between
a client and server always use encrypted HTTPS connec-
tions, the HTTP Strict Transport Security (HSTS) standard
was formalized in 2012 [9]. Modern web browsers ship with
built-in lists of HSTS-enabled domains. These browsers will
never connect to an HSTS-enabled domain over plain HTTP,
even on the first visit to that domain or if the user manually
specifies http:// in the browser’s URL bar.

2.2 Web sessions

As the adoption of HTTP rapidly grew shortly after its for-
mal inception in 1996 [15], many revisions of the protocol
standard, largely centered around performance increases,
were published and adopted in quick succession. Application
developers soon desired ways to build applications which
preserve information about their users between requests,
despite the stateless nature of HTTP. Early web browsers did
not support storing state information [14], but the need to
keep track of such data quickly became apparent, especially
in the context of web applications [5].

Uniquely identifying a user across individual requests
is represented by the idea of a session. A session can be
established by the server generating a session identifier (SID)
and sending it to the client. The client now re-transmits
the SID with each request, for the duration of the session,
thus authenticating themselves as a session owner whom
the application can identify.

Several mechanisms exist and have been widely used to
persist SIDs across requests [10]. Two methods which were
widely employed in the past to exchange and store SIDs are
hidden form fields and URL rewriting. Due to poor reliability,
limitations in user experience and security issues [23] [10],
they have been widely replaced by cookies.

2.2.1 Hidden form fields. An SID can be embedded in a
hidden HTML form by the server, and the document contain-
ing the form is then sent to the client. The client must now
submit the form containing the SID to the server with each
subsequent request in order to keep the session alive. The
SID is embedded in the HTML source code of each page the
user receives for the duration of the session, albeit hidden
from the user’s direct view by the browser.

A downside to this approach is that the SID, or other state
information, may get lost if the user clicks on their browser’s
back-button. Additionally, the performance overhead of pars-
ing a form for every request on the server side is significant,
and hidden form fields do not lend themselves well to client-
side caching of web pages [14].

Since the SID is plainly visible to anyone with access to the
HTML source code on the client’s machine, sessions relying

Julian Lobbes

on hidden form fields are particularly vulnerable against
cross-site-scripting attacks (XSS), as shown in section 3.2.

2.2.2 URL rewriting. In URL-rewriting, the server gener-
ates an SID and redirects the client to a URL containing the
SID as a URL parameter. The SID gets appended to the URL
for each subsequent request the client sends to the server. A
URL containing a session ID may look like listing 1:

https://example.com/profile.html?sid=a92nl152

Listing 1. Session ID key-value pair embedded in a URL

The SID is visible in the client’s address bar and browser
history.

Just like with hidden form fields, state information is lost
if the user presses their browser’s back-button. Web appli-
cations utilising URL rewriting suffer from poor server-side
caching performance [14]. The biggest downside with this
approach, however, is that the SID can quite easily leak to
third parties. Users may copy a link containing an SID from
their address bar, and inadvertently share their SID with
others. The browser may also leak the SID to other web
servers if a logged-in user follows a link leading to another
domain, because the link origin’s URL is displayed in the
Referrer HTTP header field in the request leading to the
third-party domain. Moreover, applications which manage
sessions using URL rewriting are particularly vulnerable to
session fixation vulnerabilities, as shown in section 3.5.

2.2.3 Cookie-based session management. The HTTP
specification was extended to include cookies in 1997 [14].
Cookies are name/value pairs, transmitted using HTTP mes-
sage headers, and stored in the client’s browser and on the
web server. As shown in Figure 1, a cookie is set by the
web server, using the HTTP header’s Set-Cookie directive,
and then sent to the client. Clients send all cookies they
are storing in the context of a particular domain along with
each request they send to this domain’s web server, thus
preserving state information across multiple requests [2].
If the cookie contains an SID, the server can identify the
session and authenticate the user for each request.

Besides being name/value-pairs, cookies can be individ-
ually configured to have some additional attributes telling
both clients and servers to handle them in a certain way. Two
important attributes for cookies are the Secure-attribute and
the Httponly-attribute. Secure prevents cookies from being
sent over unencrypted channels such as plain text HTTP.
Httponly disallows client-side JavaScript code from reading
the cookie. Correct usage of each of these attributes for au-
thentication cookies is crucial to securing web sessions, as
we show in sections 3.1 and 3.2 respectively.

3 Session security threats

A vast number of web applications on the internet allow
access to sensitive information. With the number of Internet

Cookiejar Kintsugi: Reviewing the state of web application session security

Client Server

/

POST /login.html HTTP/1.1

username=alice&password=1234
[...1 D E

HTTP/1.1 200 OK
< set-cookie: SID=abcdef-123456
[...1

GET /my-account.html HTTP/1.1
Cookie: SID=abcdef-123456
[...1

<:(HTTP/1.1 200 OK
[...]

Figure 1. HTTP cookie exchange

DOOD

of Things (IoT) devices sharply on the rise, the number of
endpoints providing access to not just sensitive information,
but to control systems as well, is growing rapidly. Many of
these devices are controlled via web interfaces [21].

Many modern web applications utilise an authentication
system, restricting access to such resources to authorised
users, whereby session management and authentication us-
ing cookie-based SIDs is the de-facto standard [5]. SIDs are
a highly desirable target for malicious actors, particularly
in light of how severe the consequences of a breach in con-
fidentiality of the SID can be. Session hijacking is a class of
attack in which an attacker obtains an innocent user’s session
identifier. The attacker can then use the session identifier
to authenticate as the victim, granting them unauthorised
access to protected resources. Session hijacking can be car-
ried out at the network layer, as well as at the application
layer [10]. In this section, an overview of the common ways
in which session tokens can be stolen is examined.

3.1 Plain text packet capture

In this network level attack, the attacker monitors TCP traffic
on their local network, or on a route between the victim
and the destination web server. If the vulnerable application
transmits SIDs in plain text HTTP, an attacker acting as a
man in the middle can read the SID. This is shown in Figure 2.

When web traffic is unencrypted, web applications utiliz-
ing URL rewriting or hidden forms are susceptible to plain
text packet capture, as attackers can read the full HTTP
request, including message header and body. If cookies are
used to transmit the SID, the session is only protected against
this kind of attack if the secure option is set on the cookie, as
this flag prevents its transmission over plain text protocols.

TUBS, July 21, 2022, TU Braunschweig, DE

Client Server
GET /my-account.html HTTP/1.1
[_____|Cookie: SID=abcdef-123456
[...1
packél énlﬁlng
t=0
Attacker
POST /update-password.html
HTTP/1.1
t=1 E—cookie: SIp=abcdef-123456
[...1

Figure 2. Man in the middle packet capture

3.2 Cross-site scripting (XSS)

Scripts running within a website’s first origin can access
all HTML elements within the document in which they are
embedded. This makes all documents containing hidden form
fields susceptible to access by malicious scripts. First origin
scripts may also read and set cookies unless the cookie’s
Httponly-flag is set. A web application vulnerable to XSS
which does not set Httponly for its session cookies allows an
attacker to inject a script which extracts the SID and sends
it to the attacker.

3.3 Unisolated scripts

The majority of websites import third party JavaScript scripts
from remote sources [10]. These scripts run in the website’s
first origin if they are not isolated within an HTML <iframe>
block, which effectively allows the provider of the remote
script access to all session cookies, if they are not set to
Httponly [16]. Malicious or compromised script providers can
abuse this to access unwitting users’ sessions.

3.4 Cross-site request forgery (CSRF)

According to Zeller and Felten [24], “CSRF attacks occur
when a malicious web site causes a user’s web browser to
perform an unwanted action on a trusted site”. Rather than
stealing the session ID, the attacker’s goal is to force the vic-
tim to unknowingly execute an action chosen by the attacker
on the target website.

An authenticated user’s browser will send the session
cookie along with every request to the target website, re-
authenticating them with every request. An attacker can
trick the user into submitting a specially crafted request to
the target website, for example by embedding the request
as a hidden HTML element in an email or on a malicious

TUBS, July 21, 2022, TU Braunschweig, DE

website. As an example, an attacker may craft an invisible
image such as the one shown in listing 2:

< ="https://bank.com/transfer.php?acct=
ATTACKER&amount=100000" ="Q" ="0"
=ngh>

Listing 2. HTML image containing a CSRF exploit

Simply loading a page containing the above HTML image
tag would cause the user’s browser to send a request for
the URL specified as the image source to bank.com. If the
user is currently logged in, their session cookie for the site
will be appended, authorizing the transaction without their
knowledge.

In contrast to web applications which utilize cookies for
session management, those employing URL rewriting or
hidden forms are typically not vulnerable to CSRF.

3.5 Session fixation

In a session fixation attack, the attacker first establishes a
session on the server, retrieving an SID in the process. They
then introduce the retrieved session token into the victim’s
browser, for example by employing social engineering. Both

attacker and victim will now be logged in to the same session.

If the session ID is stored in the URL, session fixation attacks
are much easier for an attacker, as they only need to get their
victim to click on a link containing their SID in order to trick
them into using the attacker’s crafted session. This process
is depicted in Figure 3.

Attacker Server

A 4 POST /login.html HTTP/1.1
t=0 / username=h4x0r&password=1337
[...]
HTTP/1.1 303 See Other
t=1 /w Location: /index.html?sid=uetiH30j
[...]

/

!

/

/1]

Client
_ Hi! why don't you click on this link
t=2 example.com/index. html?sid=uetiH30]
~
POST /profile.html?sid=uetiH30j
t=3 social-security-no: 123456789
[...1 =
~]@
=~
~
GET /profile.html?sid=uetiH30j
t=4 [1
=]
—~

Figure 3. Session fixation attack

Julian Lobbes

3.6 Cache/Log sniffing

The browser cache contains session cookies and cached
HTML documents containing SIDs embedded in hidden
forms. The browser’s history keeps track of all URLSs a user
has visited, including those containing SIDs for websites
which use URL rewriting. An attacker with access to a vic-
tim’s browser cache can compromise their sessions on web-
sites which use hidden forms or cookies. Access to the brows-
ing history will reveal SIDs from websites which use URL
rewriting.

A log sniffing attack does not necessarily require direct
access to a victim’s browser by the attacker. If a user authenti-
cates with a web application which employs URL rewriting to
manage the session, any machine relaying packets or HTTP
requests for the victim may keep logs which contain the vic-
tim’s SID as a URL parameter if the traffic is unencrypted. A
malicious actor with access to the logs can thereby intercept
the victim’s SID and use it to hijack the session.

4 Threat mitigation

As presented previously, there are various attack vectors
which malicious actors can exploit, almost all of which can,
and should, be mitigated on the application developer’s
and system administrator’s side. This section serves as an
overview for the most fundamental and important security
mechanisms which web site providers should employ in or-
der to prevent session hijacking vulnerabilities by today’s
standards.

4.1 Use cookies

The use of cookies for session management has become the
industry standard [5], and with good reason. The previously
widespread methods of using URL rewriting or hidden forms
to handle SIDs have proven to be unreliable and fundamen-
tally insecure in the past [23] [10] [19] [20]. Using cookies
in their place greatly reduces the attack surface for a range
of attacks which enable session takeover. The remainder of
this paper focuses on session security of web applications
that use cookies for session management.

4.2 Use HTTPS

Utilizing encrypted communication to transfer session cook-
ies is a prerequisite to preventing cookie hijacking. Restrict-
ing the transmission of session cookies to HTTPS is arguably
the easiest way to prevent a wide range of man-in-the-middle
vulnerabilities. Yet, a surprising number of websites, includ-
ing some major ones, fail to do so [17] [22] [6]. The most
straightforward way to ensure that session cookies are never
transmitted in the clear is by setting their secure flag.

Other mechanisms which ensure HTTPS, such as upgrad-
ing a visitor’s connection from HTTP to HTTPS, provide
some protection. However, these fall short if the session
cookie is sent in plain text during the initial request, for

Cookiejar Kintsugi: Reviewing the state of web application session security

example when the user manually visits a URL prefixed with
http:// [3]. Web server administrators and domain owners
should enable HSTS for their servers and domain to ensure
that only HTTPS is used across all of the domain and all
subdomains [9]. So far, however, HSTS has not seen wide
adoption, and misconfigurations are common [6], as is ex-
hibited in section 5.2.3.

4.3 Disable script access to session cookies

Developers should ensure that session cookies cannot be
accessed from client-side scripts. This can be ensured by
adding the Httponly flag to session cookies, mitigating the
risks of XSS vulnerabilities, at least in the context of session
hijacking.

4.4 Isolate 3rd party scripts

Scripts imported from remote content providers run in the
importing website’s first origin by default. If session cookies
are accessible to scripts, this gives third parties access to user
sessions, and opens the web application up to XSS attacks
from compromised or untrustworthy content providers. Ap-
plication developers should isolate external scripts [6] to
prevent this.

5 Prevalence

Gathering data for large-scale empirical assessments about
the prevalence of web session vulnerabilities in the wild is
not straightforward. Analyzing whether a large number of
web applications handle their respective session tokens se-
curely requires creating a user account on each application
to be audited, followed by signing in using the created ac-
count and subsequently analysing the website’s behaviour
with regards to the session cookies. As automated account
creation and sign-in on web applications is generally con-
sidered undesirable, in some cases even a vulnerability, this
process presents the largest hurdle to conducting large scale
studies [6].

This is reflected by the lack of large scale empirical data
available today. Several studies and data sources have at-
tempted to determine the prevalence of session management
vulnerabilities on the web in general, but all previously pub-
lished studies require significant levels of manual effort by
researchers for account creation and sign-in, which reduces
the pool of auditable web applications significantly, with the
exception of Drakonakis et al. [6].

5.1 Manual analysis

Most data sources determining the incidence of session vul-
nerabilities rely on manual interaction for account creation
and sign-in [6]. The Open Web Application Security Project
(OWASP) sources from a large pool of contributors manually
reporting occurrences of web vulnerabilities, and is able to
periodically provide a comprehensive report on the state of

TUBS, July 21, 2022, TU Braunschweig, DE

web application security in general [1], outlining the most
significant vulnerabilities at the current point in time. Over
the past decade, XSS injection was ranked among the top
three most significant risks in OWASP’s top 10. The signifi-
cance rating of web site misconfiguration, which includes
exposed authentication cookies, has been gradually increas-
ing [18] [19] [20], and remains high today. The presence of
each of these vulnerability types can leave web applications
open to session hijacking attacks.

This trend seems to be reflected in studies such as Niki-
forakis et al. [17], who found that less than 23% of websites
which use session cookies set the HttpOnly-flag on their cook-
ies. Research by Sivakorn et al. [22], which utilized large scale
network packet capturing, showed that 15 major websites,
including Google, exposed session cookies via unencrypted
connections, with most of the web sites inspected being
vulnerable to XSS cookie stealing as well.

Relying on manual interaction to audit a small selection
of the vast number of web applications present on the web
today, however, only permits us to catch a small glimpse of
the overall state of web session security.

5.2 Automated analysis

Drakonakis et al. [6] developed a “fully automated black-box
auditing framework that analyzes web apps by exploring
their susceptibility to various cookie-hijacking attacks”. The
framework’s goal was to audit web applications “without
knowledge of their structure, access to the source code, or
input from developers” on a large scale.

The study’s methodology solved the hurdle presented by
automated account creation and sign-in, at least for those
websites which do not employ captcha challenges, and of-
fers a good reference for the steps necessary to conduct an
automated black-box security audit of web applications on
the public web.

5.2.1 Methodology. Drakonakis et al. [6]’s framework is
able to crawl websites from a large dataset of URLs, and
initially attempts to locate sign-up and login forms. The
semantic purpose of crawled pages, such as whether or not a
page is a user registration form, is inferred from the number,
types and labels of any discovered HTML <input> tags.

If any login and sign-up pages were located, the discov-
ered forms and input fields are labelled internally by the
framework, to enable filling them with data. Reliable iden-
tification of a specific input field’s purpose is necessary to
pass sign-up form validation and keep track of the login
credentials used to register. This was achieved by searching
HTML element attributes for specific keywords which infer
the element’s purpose.

Once the sign-up form is filled with data and submitted,
a registration status oracle determines whether the sign-up

TUBS, July 21, 2022, TU Braunschweig, DE

process was successful. This includes scraping received sign-
up validation emails and pages to which the framework was
redirected following the sign-up form submission.

If the registration process was deemed to be successful by
the oracle, a login module attempts to log in automatically.
Success of the operation is determined by a login oracle,
again using the presence of certain HTML elements, such as
a log out button, to determine whether the operation was
successful.

If the registration was unsuccessful but the website sup-
ports Google or Facebook single sign-on (SSO), the frame-
work attempts this method for sign in, using a previously
created default account for the respective service. Websites
whose registration process involves solving a captcha were
not audited automatically.

5.2.2 Audit. The vulnerability assessment of audited sites
centers around the framework’s cookie auditor. The auditor’s
goal is to find authentication cookies which are not suffi-
ciently protected against session hijacking. Session cookies
without an Httponly flag are assumed to be vulnerable to XSS
sniffing if the website also imports unisolated scripts from
third parties. Cookies missing the Secure flag are assumed to
be vulnerable to network-based hijacking, if the site employs
HSTS either incorrectly or not at all. Whether or not HSTS
usage is correct for an audited website is determined by a
separate module also implemented by the framework.

Determining which cookies are session cookies is crucial
in this context. In a series of requests to the website, differ-
ing sets of cookies are omitted from the request each time,
and the login oracle is consulted to determine whether the
request led to the user being logged in. Once a set of authen-
tication cookies has been identified, conclusions about their
hijacking susceptibility can be drawn based on which flags
they have.

The framework also utilizes a privacy auditor, with the
goal of determining what kind of user data can be retrieved
from the web site by an attacker after successfully capturing
a session cookie. The privacy auditing module is capable of
determining the nature of any sensitive information revealed
once an attacker has successfully stolen a session on the
vulnerable website, such as email or postal addresses, phone
numbers and similar sensitive user information.

5.2.3 Findings. Drakonakis et al. [6]’s study inspected 1.5
million unique domains, 200,000 of which were detected to
be web applications supporting account creation. 25,000 web
applications were fully audited, whereby automatic account
creation presented itself as the most significant obstacle.
12,014 domains (48.43%) were found to be vulnerable to
eavesdropping because authentication cookies are transmit-
ted over unencrypted connections. It is worth noting that
out of these, 10,495 (87.36% of those vulnerable to eaves-
dropping) did not deploy HSTS. Websites which do not set
session cookies as Secure are protected from eavesdropping

Julian Lobbes

if HSTS is deployed correctly on the web server. Drakonakis
et al. [6] shows that even on sites where HSTS was deployed
incorrectly, covering only certain subdomains for example,
cookies without the Secure attribute were safe from eaves-
dropping in many cases, yet the vast majority of sites do not
use HSTS. Four of the audited websites were themselves SSO
identity providers providing authentication for many other
sites, while transmitting session cookies in clear text.

5,680 domains did not set the Httponly flag on their cookies.
The vast majority of these sites (5,099) also import remote
JavaScript remotely without isolation, allowing the imported
script to read authentication cookies. While these sites are
not necessarily vulnerable to XSS, they do allow third parties
to read their session cookies.

The findings indicate that the threat to a victim’s privacy
on those sites which are vulnerable to session hijacking is
significant, allowing attackers to retrieve full names, email
addresses, phone numbers and a plethora of other highly
sensitive information.

6 Conclusion

Session hijacking attacks have existed since the dawn of the
internet as we know it today. Web sessions make for an at-
tractive target for actors with malicious intent, as they allow
access to sensitive information about users. Hijacked ses-
sions may even provide access to control systems or adminis-
trative interfaces, depending on the breached application and
level of access obtained. The number of web applications in
our daily lives is ever increasing. As their significance grows,
so does the impact of how securely they are managed.

Drakonakis et al. succeeded in conducting the first large-
scale, fully automated session security audit. They explored
and implemented a novel method which overcomes many
of the technical limitations of previous empirical studies,
while confirming the findings of their predecessors. Their
method allowed for a much larger sample size and hence
much greater certainty in previously proposed insights: a
large portion of publicly accessible web applications on the
internet vulnerable are to session hijacking, even today. The
majority of discovered vulnerabilities are preventable, yet
the mechanisms required to starkly reduce these risks are
not being implemented widely enough.

While occurrences of web session vulnerabilities remain
frequent and affect even large and well-funded web sites,
the security auditing framework presented by Drakonakis
et al. sets a new precedent in the available methodologies
at the disposal of researchers looking to conduct large scale
empirical analyses related to web application sessions.

References
[1] [n.d.]. OWASP Top Ten Web Application Security Risks | OWASP.
https://owasp.org/www-project-top-ten/
[2] Adam Barth. 2011. HTTP State Management Mechanism. Request
for Comments RFC 6265. Internet Engineering Task Force. https:

https://owasp.org/www-project-top-ten/
https://doi.org/10.17487/RFC6265
https://doi.org/10.17487/RFC6265

Cookiejar Kintsugi: Reviewing the state of web application session security

//doi.org/10.17487/RFC6265 Num Pages: 37.

[3] Michele Bugliesi, Stefano Calzavara, Riccardo Focardi, and Wilayat
Khan. 2015. CookiExt: Patching the browser against session hijacking
attacks. Journal of Computer Security 23, 4 (Sept. 2015), 509-537.
https://doi.org/10.3233/JCS-150529

[4] Stefano Calzavara, Riccardo Focardi, Marco Squarcina, and Mauro
Tempesta. 2018. Surviving the Web: A Journey into Web Session
Security. Comput. Surveys 50, 1 (Jan. 2018), 1-34. https://doi.org/10.
1145/3038923

[5] Dacostaltalo, ChakradeoSaurabh, AhamadMustaque, and Traynor-
Patrick. 2012. One-time cookies. ACM Transactions on Internet Tech-
nology (TOIT) 12, 1 (July 2012), 24. https://doi.org/10.1145/2220352.
2220353 Publisher: ACM PUB27 New York, NY, USA.

[6] Kostas Drakonakis, Sotiris Ioannidis, and Jason Polakis. 2020. The
Cookie Hunter: Automated Black-box Auditing for Web Authentica-
tion and Authorization Flaws. In Proceedings of the 2020 ACM SIGSAC
Conference on Computer and Communications Security. ACM, Virtual
Event USA, 1953-1970. https://doi.org/10.1145/3372297.3417869

[7] Roy T. Fielding and Julian Reschke. 2014. Hypertext Transfer Protocol
(HTTP/1.1): Semantics and Content. Request for Comments RFC 7231.
Internet Engineering Task Force. https://doi.org/10.17487/RFC7231
Num Pages: 101.

[8] Ilya Grigorik. 2013. High-performance browser networking. O’Reilly,
Beijing ; Sebastopol, CA. OCLC: 0cn827951729.

[9] Jeff Hodges, Collin Jackson, and Adam Barth. 2012. HTTP Strict Trans-
port Security (HSTS). Request for Comments RFC 6797. Internet Engi-
neering Task Force. https://doi.org/10.17487/RFC6797 Num Pages:
46.

[10] Vineeta Jain, Divya Rishi Sahu, and Deepak Singh Tomar. 2015. Session
Hijacking: Threat Analysis and Countermeasures. In International Con-
ference on Futuristic Trends in Computational analysis and Knowledge
management, Vol. 1. amity University, Greater Noida, 7.

[11] Mehdi Jazayeri. 2007. Some Trends in Web Application Development.
In Future of Software Engineering (FOSE ’07), Vol. 1. IEEE Computer
Society, 199-213. https://doi.org/10.1109/FOSE.2007.26

[12] Guy Keulemans. 2016. The Geo-cultural Conditions of Kintsugi.

The Journal of Modern Craft 9, 1 (Jan. 2016), 15-34. https://doi.

0rg/10.1080/17496772.2016.1183946 Publisher: Routledge _eprint:

https://doi.org/10.1080/17496772.2016.1183946.

Mitja Kolsek. 2002. Session fixation vulnerability in web-based appli-

cations. ACROS Security (Dec. 2002).

[14] David M. Kristol. 2001. HTTP Cookies: Standards, Privacy, and Politics.
(2001). https://doi.org/10.48550/ARXIV.CS/0105018 Publisher: arXiv
Version Number: 1.

[15] Henrik Nielsen, Roy T. Fielding, and Tim Berners-Lee. 1996. Hypertext
Transfer Protocol - HTTP/1.0. Request for Comments RFC 1945. Internet
Engineering Task Force. https://doi.org/10.17487/RFC1945 Num Pages:
60.

[16] Nick Nikiforakis, Luca Invernizzi, Alexandros Kapravelos, Steven

[13

—_

Van Acker, Wouter Joosen, Christopher Kruegel, Frank Piessens, and
Giovanni Vigna. 2012. You are what you include: large-scale evalua-
tion of remote javascript inclusions. In Proceedings of the 2012 ACM
conference on Computer and communications security (CCS ’12). As-
sociation for Computing Machinery, New York, NY, USA, 736-747.
https://doi.org/10.1145/2382196.2382274

[17] Nick Nikiforakis, Wannes Meert, Yves Younan, Martin Johns, and
Wouter Joosen. 2011. SessionShield: Lightweight Protection against
Session Hijacking. In Engineering Secure Software and Systems (Lecture
Notes in Computer Science), Ulfar Erlingsson, Roel Wieringa, and Nicola
Zannone (Eds.). Springer, Berlin, Heidelberg, 87-100. https://doi.org/
10.1007/978-3-642-19125-1_7

[18] The Open Web Application Security Project. 2010. OWASP Top 10 - The
Ten Most Critical Web Application Security Risks. Technical Report.

TUBS, July 21, 2022, TU Braunschweig, DE

[19] The Open Web Application Security Project. 2017. OWASP Top 10
Application Security Risks - 2017. Technical Report.

[20] The Open Web Application Security Project. 2021. OWASP Top 10 -
2021. Technical Report.

[21] Neha Sharma, Madhavi Shamkuwar, and Inderjit Singh. 2019. The
History, Present and Future with IoT. In Internet of Things and Big
Data Analytics for Smart Generation, Valentina E. Balas, Vijender Ku-
mar Solanki, Raghvendra Kumar, and Manju Khari (Eds.). Springer
International Publishing, Cham, 27-51. https://doi.org/10.1007/978-
3-030-04203-5_3

[22] Suphannee Sivakorn, Iasonas Polakis, and Angelos D. Keromytis. 2016.
The Cracked Cookie Jar: HTTP Cookie Hijacking and the Exposure of
Private Information. In 2016 IEEE Symposium on Security and Privacy
(SP). IEEE, San Jose, CA, 724-742. https://doi.org/10.1109/SP.2016.49

[23] Shellie Wedman, Annette Tetmeyer, and Hossein Saiedian. 2013. An
Analytical Study of Web Application Session Management Mech-
anisms and HTTP Session Hijacking Attacks. Information Secu-
rity Journal: A Global Perspective 22, 2 (March 2013), 55-67. https:
//doi.org/10.1080/19393555.2013.783952 Publisher: Taylor & Francis
_eprint: https://doi.org/10.1080/19393555.2013.783952.

[24] William Zeller and Edward W Felten. [n.d.]. Cross-Site Request Forg-
eries: Exploitation and Prevention. ([n.d.]), 13.

A Glossary
A.1 Kintsugi
Kintsugi is a traditional Japanese craft in which ceramics,

either accidentally or purposefully broken, are repaired with
urushi lacquer and gold [12].

A.2 SID - session identifier

A session identifier is a unique string of random data (typi-
cally consisting of numbers and characters) that is generated
by a Web application and propagated to the client, usually
through the means of a cookie [17].

https://doi.org/10.17487/RFC6265
https://doi.org/10.3233/JCS-150529
https://doi.org/10.1145/3038923
https://doi.org/10.1145/3038923
https://doi.org/10.1145/2220352.2220353
https://doi.org/10.1145/2220352.2220353
https://doi.org/10.1145/3372297.3417869
https://doi.org/10.17487/RFC7231
https://doi.org/10.17487/RFC6797
https://doi.org/10.1109/FOSE.2007.26
https://doi.org/10.1080/17496772.2016.1183946
https://doi.org/10.1080/17496772.2016.1183946
https://doi.org/10.48550/ARXIV.CS/0105018
https://doi.org/10.17487/RFC1945
https://doi.org/10.1145/2382196.2382274
https://doi.org/10.1007/978-3-642-19125-1_7
https://doi.org/10.1007/978-3-642-19125-1_7
https://doi.org/10.1007/978-3-030-04203-5_3
https://doi.org/10.1007/978-3-030-04203-5_3
https://doi.org/10.1109/SP.2016.49
https://doi.org/10.1080/19393555.2013.783952
https://doi.org/10.1080/19393555.2013.783952

	Abstract
	1 Introduction
	2 Background
	2.1 Hyper Text Transfer Protocol (HTTP)
	2.2 Web sessions

	3 Session security threats
	3.1 Plain text packet capture
	3.2 Cross-site scripting (XSS)
	3.3 Unisolated scripts
	3.4 Cross-site request forgery (CSRF)
	3.5 Session fixation
	3.6 Cache/Log sniffing

	4 Threat mitigation
	4.1 Use cookies
	4.2 Use HTTPS
	4.3 Disable script access to session cookies
	4.4 Isolate 3rd party scripts

	5 Prevalence
	5.1 Manual analysis
	5.2 Automated analysis

	6 Conclusion
	References
	A Glossary
	A.1 Kintsugi
	A.2 SID - session identifier

