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Introduction

* Web sessions

* what are they and why are they important?
* vulnerabilities and attacks

* threat mitigation

 the current state of the web



Background



HTTP

* Hyper Text Transfer Protocol
* client = server
* client requests (GET, POST,
° server responds
* cleartext messages
* metadata in Header
* content in Body
* stateless communication
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* Hypertext Transfer Protocol Secure

° encrypts messages
° authenticates the server
* public certificate infrastructure



* HTTP Strict Transport Security

* server declares that only HTTPS connections are accepted
* in response to client’s initial HTTP request
* HSTS preloading:

e list of HSTS-enabled domains hardcoded in the web browser
 initial request is encrypted as well



Web sessions

* web applications need stateful communication

* session:
* 1identify/authenticate a client across requests
* using a session identifier (SID)
 SID assigned to client by the server



Session Management



Session Management

* different methods used to transmit/store SIDs:
°* hidden form fields
* URL rewriting
* cookies



Hidden form fields

* SID is embedded inside HTML source code (<form> element)
* client submits form with every request (POST)
* server responds with an HTML document containing the SID
 problems:
* usage of back-button

e performance costs (parsing, chaching)
* vulnerable to XSS



URL rewriting

e SID is stored as a URL parameter:
 https://example.com/profile.html?sid=a92n152
* client appends SID to URL with each request
* server redirects to URL containing SID with each response

 problems:

* usage of back-button

 performance costs (caching)

e SID leakage to third parties

* vulnerable to session fixation attacks



Session Cookies

 Cookie:

* key/value-pairs in HTTP Header
* server sends a cookie using Set-Cookie directive
* client stores cookies locally per domain

* appends all stored cookies with each request to domain
 special attributes:

* Secure prevents transmission in plain text
°* HttpOnly prevents access by client-side scripts

* problems:
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Client Server

bS

i
r HTTP/1.1 200 OK
t=1 <:set-cookie: SID=abcdef-123456
[...] E
\
r = r ™
GET /my-account.html HTTP/1.1
i=2 [—Cookie: SID=abcdef-123456 :>
[...]
\ A
r HTTP/1.1 200 0K
t=3 <}:[__] — a

L.

S
i ™
r POST /login.html HTTP/1.1
t=10 [ jusername=alice&password=1234 :>
[...] E

H ,
"

.




Session Security Threats



Session hijacking

* Session Hijacking:
* attacker intercepts SID and impersonates victim
* SIDs are a valuable target



Man in the middle

* network-layer attack
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Cross-site scripting (XSS)

* Client-side scripts can access HTML elements
* unless isolated

* cookies only protected if HttpOnly is set

* malicious script sources:

* attacker injecting script into client browser
* third-party imported scripts



Session fixation

attacker sets up a session

introduces SID into victim’s
browser
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Cross-site request forgery (CSRF)

* authenticated victim unknowingly takes an action chosen
by the attacker

* client browser attaches bank.com session cookies with every
request

 attacker coerces client browser to make a request

<img src="https://bank.com/transfer.php?acct=ATTACKER&amount=100000"
width="0" height="0" border="0">



Threat Mitigation



Threat mitigation

° use cookies
* encrypt all traffic always (HTTPS)

 set cookies to Secure
* use HSTS with preloading
 prevent script access to session cookies

 set cookies to HttpOnly
* 1isolate scripts



Analysis & Prevalence



Analysis

* steps required to audit session security:
* create a user account
* sign 1in
* identify session cookies
* find vulnerabilities
* (assess the damage)
* large-scale studies are difficult!

* lack of empirical data



Data sources

* OWASP Top Ten
 public contributions
* large sample size
* only qualitative analysis

 Calzavara et al. (2019)

* less than 23% of websites using session cookies set HttpOnly
 partially automated, n=20
* Sivakorn et al. (2016)

* 15 major websites expose session cookies in cleartext
°* manual, n=25



Data Sources

* Drakonakis et al. (2020)

* Cookie Hunter: Automated Black-box Auditing for Web
Authentication and Authorization Flaws

 fully automated
* n=25,000
* black-box web application session auditing framework



Cookie Hunter: Account Creation

* crawl websites for sign-up and registration forms

* look for <input> fields
* identify their purpose
* based on their labels

° regex detection
e use of translators



Cookie Hunter: Account Creation

* fill sign-up forms with dummy data and submit

°* determine if registration was successful:
° by trying to log in



Cookile Hunter: Account Logiln

* Logging in:
* submit credentials in login form
 determine success using a login oracle:

 presence of a logout button indicates success



Cookile Hunter: Account Logiln

° some sites support single-sign-on (SSO)
* used if direct sign-up did not work
* using a Google/Facebook account
* sites using CAPTCHA challenges prevent automated sign-up



Cookie Hunter: Audit

* identify session cookies
°* based on trial and error and login oracle
° inspect cookie attributes (HttpOnly, Secure)

°* {1s HTTPS/HSTS employed correctly?
 are there unisolated 3rd party scripts?



Cookie Hunter: Damage Assessment

 privacy auditor on vulnerable websites

 determine what kind of data can be exfiltrated by an
attacker

° emails
°* addresses
* phone numbers



Cookile Hunter: Findings

* 1.5 million domains inspected
° 200,000 of which support account creation
e 25,000 were fully audited by the framework

° 12,014 (48.43%) vulnerable to network sniffing

* 10,495 of which do not deploy HSTS correctly
* 5,099 did not set HttpOnly while importing 3rd party scripts
* most vulnerable sites leak a lot of sensitive information

* full addresses

* phone numbers

* credit card numbers
* weakly-hashed passwords



Conclusion



Session hijacking

* Many websites are vulnerable
* network sniffing
* XSS through imported scripts
* (Causes:
* insufficient/improper configuration of HSTS
° unisolated scripts
* Analysis:
* manual analysis only allows small sample sizes

* The Cookiehunter successfully implements the first automated
black-box auditing framework



Questions
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