Cookiejar Kintsugil

Reviewing the state of web application session security

Julian Lobbes
TU Braunschweig

Introduction

* Web sessions

* what are they and why are they important?
* vulnerabilities and attacks

* threat mitigation

 the current state of the web

Background

HTTP

* Hyper Text Transfer Protocol
* client = server
* client requests (GET, POST,
° server responds
* cleartext messages
* metadata in Header
* content in Body
* stateless communication

Client

Embedded Server
IP: 192.168.1.50

TCP Connect

HTTP Request

Process Response

HTTP Request

Response

Process Request

* Hypertext Transfer Protocol Secure

° encrypts messages
° authenticates the server
* public certificate infrastructure

* HTTP Strict Transport Security

* server declares that only HTTPS connections are accepted
* in response to client’s initial HTTP request
* HSTS preloading:

e list of HSTS-enabled domains hardcoded in the web browser
 initial request is encrypted as well

Web sessions

* web applications need stateful communication

* session:
* 1identify/authenticate a client across requests
* using a session identifier (SID)
 SID assigned to client by the server

Session Management

Session Management

* different methods used to transmit/store SIDs:
°* hidden form fields
* URL rewriting
* cookies

Hidden form fields

* SID is embedded inside HTML source code (<form> element)
* client submits form with every request (POST)
* server responds with an HTML document containing the SID
 problems:
* usage of back-button

e performance costs (parsing, chaching)
* vulnerable to XSS

URL rewriting

e SID is stored as a URL parameter:
 https://example.com/profile.html?sid=a92n152
* client appends SID to URL with each request
* server redirects to URL containing SID with each response

 problems:

* usage of back-button

 performance costs (caching)

e SID leakage to third parties

* vulnerable to session fixation attacks

Session Cookies

 Cookie:

* key/value-pairs in HTTP Header
* server sends a cookie using Set-Cookie directive
* client stores cookies locally per domain

* appends all stored cookies with each request to domain
 special attributes:

* Secure prevents transmission in plain text
°* HttpOnly prevents access by client-side scripts

* problems:

Session Cookies

Client Server

bS

i
r HTTP/1.1 200 OK
t=1 <:set-cookie: SID=abcdef-123456
[...] E
\
r = r ™
GET /my-account.html HTTP/1.1
i=2 [—Cookie: SID=abcdef-123456 :>
[...]
\ A
r HTTP/1.1 200 0K
t=3 <}:[__] — a

L.

S
i ™
r POST /login.html HTTP/1.1
t=10 [jusername=alice&password=1234 :>
[...] E

H ,
"

.

Session Security Threats

Session hijacking

* Session Hijacking:
* attacker intercepts SID and impersonates victim
* SIDs are a valuable target

Man in the middle

* network-layer attack

t=0
* packet sniffing
* exploits unencrypted
traffic
t=1

-,

S
-
r GET /my-account.html HTTP/1.1
[|Cookie: S5ID=abcdef-123456
[...]
2 by

packet slniffing
e L

T
2

Attacker

A

'-n.‘____‘--'
POST /update-password.html
HTTP/1.1
]

Cookie: SID=abcdef-123456
S

p

Server

Cross-site scripting (XSS)

* Client-side scripts can access HTML elements
* unless isolated

* cookies only protected if HttpOnly is set

* malicious script sources:

* attacker injecting script into client browser
* third-party imported scripts

Session fixation

attacker sets up a session

introduces SID into victim’s
browser

Attacker Server

S
POST fl ogin.html HTTPfl 1
t=0 |: e=ndx@ré&password=1337
S
HTTP/1 1 303 See Othe
t=1 n: /index.html?sid=u uetiH3oj

Client

e~
_ H!whyd 't you click o th link:
=2 m/index. htmi7side uetiH3o]

<

e
' PCIST !p ht 1?sid=ueti
t=3 |: I'H 123456?89
‘-q...-_‘-‘-'-
GET /profile.html?sid=uetiH3o]
t=4 Q —. 7 ’ J::> E

Cross-site request forgery (CSRF)

* authenticated victim unknowingly takes an action chosen
by the attacker

* client browser attaches bank.com session cookies with every
request

 attacker coerces client browser to make a request

<img src="https://bank.com/transfer.php?acct=ATTACKER&amount=100000"
width="0" height="0" border="0">

Threat Mitigation

Threat mitigation

° use cookies
* encrypt all traffic always (HTTPS)

 set cookies to Secure
* use HSTS with preloading
 prevent script access to session cookies

 set cookies to HttpOnly
* 1isolate scripts

Analysis & Prevalence

Analysis

* steps required to audit session security:
* create a user account
* sign 1in
* identify session cookies
* find vulnerabilities
* (assess the damage)
* large-scale studies are difficult!

* lack of empirical data

Data sources

* OWASP Top Ten
 public contributions
* large sample size
* only qualitative analysis

 Calzavara et al. (2019)

* less than 23% of websites using session cookies set HttpOnly
 partially automated, n=20
* Sivakorn et al. (2016)

* 15 major websites expose session cookies in cleartext
°* manual, n=25

Data Sources

* Drakonakis et al. (2020)

* Cookie Hunter: Automated Black-box Auditing for Web
Authentication and Authorization Flaws

 fully automated
* n=25,000
* black-box web application session auditing framework

Cookie Hunter: Account Creation

* crawl websites for sign-up and registration forms

* look for <input> fields
* identify their purpose
* based on their labels

° regex detection
e use of translators

Cookie Hunter: Account Creation

* fill sign-up forms with dummy data and submit

°* determine if registration was successful:
° by trying to log in

Cookile Hunter: Account Logiln

* Logging in:
* submit credentials in login form
 determine success using a login oracle:

 presence of a logout button indicates success

Cookile Hunter: Account Logiln

° some sites support single-sign-on (SSO)
* used if direct sign-up did not work
* using a Google/Facebook account
* sites using CAPTCHA challenges prevent automated sign-up

Cookie Hunter: Audit

* identify session cookies
°* based on trial and error and login oracle
° inspect cookie attributes (HttpOnly, Secure)

°* {1s HTTPS/HSTS employed correctly?
 are there unisolated 3rd party scripts?

Cookie Hunter: Damage Assessment

 privacy auditor on vulnerable websites

 determine what kind of data can be exfiltrated by an
attacker

° emails
°* addresses
* phone numbers

Cookile Hunter: Findings

* 1.5 million domains inspected
° 200,000 of which support account creation
e 25,000 were fully audited by the framework

° 12,014 (48.43%) vulnerable to network sniffing

* 10,495 of which do not deploy HSTS correctly
* 5,099 did not set HttpOnly while importing 3rd party scripts
* most vulnerable sites leak a lot of sensitive information

* full addresses

* phone numbers

* credit card numbers
* weakly-hashed passwords

Conclusion

Session hijacking

* Many websites are vulnerable
* network sniffing
* XSS through imported scripts
* (Causes:
* insufficient/improper configuration of HSTS
° unisolated scripts
* Analysis:
* manual analysis only allows small sample sizes

* The Cookiehunter successfully implements the first automated
black-box auditing framework

Questions

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36

